
Inventory Management System
INTRODUCTION

 Inventory management information system is high performance software, which speeds up the business operations of the organization. Every organization, which deals with the raw materials, put its great effort in the efficient utilization of its raw material according to its need and requirement. The organization has to perform number of tasks and operations in order to run its business in a manual system. For example:

· Estimation of new raw material required.

· Preparation of purchase order.

· Preparation of Inward gate pass/purchase invoice.

· Preparation of Outward gate pass /sale invoice.

· Preparation of Debit note.

Advantages if Inventory management systems are as follows:
1. Inventory information can be handled easily.

2. The manager can easily view when the updates are done at the point of sale devices.
3. The manager can make decisions very fast.

4. The manager can plan the goods production.

5. Automatic value generation.

[image: image1.png]
LITAERATURE SURVAY

By following these operation and tedious tasks, the management faces following problems:

· Production delays due to raw-material non-availability
· Stuck-up of investments in raw-material inventories
· Ineffective control over raw material issuance and wastages.
inventory System is cost-effective solution for managing raw material & inventory. Managing the inventory reduces the inventory carrying cost by Inventory procurement and assisting the management in just in time decision-making. Clicksoft War house inventory System is ideal business solution for manufacturers and Producers who want to reduce their operational costs and become more competitive.

All processes mentioned above were experienced during interaction with actual users involved in procurement and inventory management operations. This involves people ranging from Warehouses in-charge to business general managers and CEOs.

Warehouse System provides elegant, effective, and practical solution to automate the Procurement process and other up-stream supply chain operations. High ROI (return on Investment) is guaranteed in the form of optimized inventories.

Warehouse System Inventory provides a competitive edge to manufacturers by reducing the inventory Carrying cost and by avoiding production delays through timely availability of raw

Materials. Also the cost of production goes down due to control in the raw material

Warehouse SYSTEM optimize the raw material inventories by adopting an intelligent inventory procurement process. Inventory procurement is completely automated.

Warehouse System manages the procurement of inventory on the basis of purchase orders. System performs the analysis of required inventory items for manufacturing orders, and generates the demand for a particular item to the particular vendor of each of the inventory items. It then generates the purchase orders for vendors (automated procurement process). The inventory is procured only when it’s required, and thus the total stock available in the Warehouse is reduced and inventory-carrying cost goes down.

Management of large number of orders, starting in different calendar dates, involving different inventory items, become easy and effortless operation. Ware house System not only informs the users about the current level of inventory available in the Ware house, but also it gives the details about the utilization of inventory items for future manufacturing orders by generating demands.

Inventory System is concerned with raw material procurement (MRP) and management of suppliers and vendors.

Major functions of Warehouse Inventory SYSTEM include the following:

Inventory Optimization (JIT)

· Auto generated Daily Demand

· Auto generated Daily Purchase Order (PO) of raw materials

· Avoid production delays

Inventory Procurement

· Manage procurement schedule

· Keep minimum required inventory levels

· Purchase only when required for production – procurement automation

 LC Plan

· Raw material is estimated through intelligent formula calculation by considering production rate of an item

· It is highest form of demand.

Monitor and improve Vendor relations

· Monitor supplier commitments

· Manage supplier payments

Gate Passes

· Auto generated Inward gate pass according to purchase order

· Auto generated Outward gate pass for rejected item from the Ware house

GRN (Goods Receive Note)

· Goods receive note for a particular supplier according to Inward gate pass.
· Warehouse issues stock on the average to the different department.

Debit Note

· Debit note for a suppliers is automatically generated during the entry of the GRN and Line Return

Line Return

· Rejected Items are returned to Ware house. Outward Gate Pass is issued

· Debit Note for Vendor is issued

Payments

· Payments into/from Purchase Orders are recorded providing Purchase Orders Balances

Customizability and Flexibility

· User defined attributes for inventory items

· Definition of inventory items, their vendors, vendor prices

· Definition of customers and their relevant information

· Definition of departments and their employees

Security Features

· Configuration of user groups of users and their privileges for the System

· Logging of all actions of the users for future reference

Inventory Movement

· Inventory receipts and returns from the vendors

· Inventory issues and returns to departments

System Security

· System tracks all the actions Performed by the users

· Action log is maintained along with user reference and the time of action.

Inventory Re-Order Levels

User can set three types of reorder Levels:

· Minimum

· Optimal

· Maximum.

Data recovery

Data is quite important for organizations so efficient data recovery and back up procedures are embedded into the SYSTEM to enhance its security features.

The System performs following important tasks:

Setting up the Environment

In the initiation process of a SYSTEM, data is feed into the master files of

· Departments

· Users

· Vendors

· Customers

· Finished Goods

· Raw Inventory Items

· Prices

· Minimum Order Level

Auto Generated Demand Dept Wise

Software generates demand for a particular raw material item according to the average quantity of raw material needed, if the quantity of a raw material item is less than to the MOL (minimum order level). The demand can be generated on the daily basis. This auto-generated demand has full detailed information about item as well as vendors.

The System generated demand can be customized manually

Auto Generated Purchase Order Dept Wise

Purchase order for raw material is suggested by the System, automatically, according to future manufacturing orders (procurement automation). Minimum required inventory levels are maintained by the System. In this way, organizations get benefits like:

· Production delays are avoided through timely availability

· Over stocking is avoided by the System

Inward Gate Pass

On receiving inventory items, inward gate pass is generated by software according to the purchase order.

Goods Receive Note

This is the most important phase when the Warehouse receives the inventory items. The items are entered into stock and maintain the stock quantity by decrementing or incrementing stock. Here the SYSTEM performs two important steps

· Software generates Debit Note to the concerning vendor for a rejected items

· Software generates Out Ward gate Pass for a rejected items

So in this way organization can get following benefits

· System allows the user to reject the below standard items

· System allows the user to return defective inventory items

Inventory Issuance/Ware house Requisition

After receiving items into the Warehouse the inventory materials are issued according to requisitions. In this way inventory shortage & available quantities information is available.

Monitor and Control

The SYSTEM performs following monitoring tasks:

· Perform physical audits and match available quantities with required ones

· Check material wastage trends – Process wastage & Physical audit wastage

· Check planned material quantity & actual issued material quantity

· Check material availability against particular manufacturing order

The Benefits: Better Inventory Management, Marketing, and Customer Service

	1.
	Savings in inventory management. Microsoft Dynamics RMS allows Wood to keep an ever-present eye on inventory levels and place necessary orders quickly and efficiently. He estimates he saves about 24 hours a week—or roughly $10,000 US a year—because of the system's efficiency and reliability.

"Our inventory problems were instantly solved," he says. "We order what we need quickly, and the items arrive priced and ready to go on the shelves." He adds that he loves the "color-coding system that identifies exceptions. That way, we're able to instantly identify when we receive an incorrect quantity."

The system's capacity to automatically identify the lowest-cost suppliers has also slashed Wood's purchasing costs by about 10 percent. "Now," he adds, "we have vendors fighting against each other for our business."

	2.
	An advantage in customer service. Any business the size of APet needs to latch onto every advantage it can get in order to hold its own against better-financed competitors.

In APet's case, that means customer service—yet another area where Microsoft Dynamics RMS comes to the fore. When a customer buys an item, the system flashes a note to the cashier allowing him or her to pass along specific, hands-on advice that has been entered into the network.

Case in point: The system warns cashiers that certain aquarium heaters shatter if plugged in outside of water. "If a heater is on the sales ticket, the cashier gets a message on the screen to tell the customer not to plug the heater in unless it's immersed in water," says Wood. "A lot of these get returned because people don't know this. Our customers do."

	3.
	More focused marketing. Like many other retailers, APet offers customers discounts in return for personal information about themselves and their buying habits. Using the detailed customer information capability in Microsoft Dynamics RMS, Wood can tailor highly focused marketing and advertising campaigns that aim at specific consumers.

"It's really reduced our costs and increased our returns from things such as direct mail campaigns. Before, we used to get a one percent return. Now we get anywhere from 12 to 15 percent. That's just huge." That sort of return is particularly important to APet. Since both stores are stand-alone operations located away from malls, it's essential to target those customers who will take the time to make a special trip.

	4.
	Greater internal security. Thanks to the system's capacity to show inventory irregularities, Wood has reduced employee theft. For instance, the system quickly identified an aberration when an employee was misidentifying returns and pocketing the cash. Notes Wood with a laugh, "The police were dumbfounded by my extensive forms of proof."

	5.
	Standout customer service. Wood says he values the reliability and integrity that Microsoft places on service after the sale. "You just can't do any better than Microsoft for support—although I must say that I've had to use them infrequently. The system takes care of itself."

	6.
	The intangibles. Says Wood: "I know that my employees count on Microsoft Retail Management System to work. We hire a lot of teenagers and they're all very comfortable with it." Plus, he now gladly takes his work home—and away from the office.
"I have high speed internet connections at home and the stores," he says. "It allows me to spend time at home with work, write sales reports, and look at progress at the stores and the problems."

Introduction to JAVA
The Java Story

Back in 1990, a gentleman by the name of James Gosling was given the task of creating programs to control consumer electronics. Gosling and his team of people at Sun Microsystems started designing their software using C++, the language that most programmers were praising as the next big thing because of its object-oriented nature. Gosling, however, quickly found that C++ was not suitable for the projects he and his team had in mind. They ran into trouble with complicated aspects of C++ such as multiple inheritances of classes and with program bugs such as memory leaks. Gosling soon decided that he was going to have to come up with his own, simplified computer language that would avoid all the problems he had with C++.

Introducing Java

By now, everyone may be curious why Java is considered such a powerful tool for Internet development projects. We already know that Java is a simplified version of C++. Anyone who has struggled with learning C++ knows that the key word in the previous sentence is "simplified." C++ added so much to the C language that even professional programmers often have difficulty making the transition.

 [image: image2.png]
According to Sun Microsystems, Java is "simple, object-oriented, statically typed, compiled, architecture neutral, multi-threaded, garbage collected, robust, secure, and extensible." That's a mouthful, but this description of Java probably doesn't help to understand the language much. The following list of Java's attributes, however, should clear out some of the cobwebs:

· Simple. Java's developers deliberately left out many of the unnecessary features of other high-level programming languages. For example, Java does not support pointer math, implicit type casting, structures or unions, operator overloading, templates, header files, or multiple inheritance.

· Object-oriented. Just like C++, Java uses classes to organize code into logical modules. At runtime, a program creates objects from the classes. Java classes can inherit from other classes, but multiple inheritances, wherein a class inherits methods and fields from more than one class, are not allowed.

· Statically typed. All objects used in a program must be declared before they are used. This enables the Java compiler to locate and report type conflicts.

· Compiled. Before user can run a program written in the Java language, the Java compiler must compile the program. The compilation results in a "byte-code" file that, while similar to a machine-code file, can be executed under any operating system that has a Java interpreter. This interpreter reads in the byte-code file and translates the byte-code commands into machine-language commands that can be directly executed by the machine that's running the Java program. One could say, then, that Java is both a compiled and interpreted language.

· Multi-threaded. Java programs can contain multiple threads of execution, which enables programs to handle several tasks concurrently. For example, a multi-threaded program can render an image on the screen in one thread while continuing to accept keyboard input from the user in the main thread. All applications have at least one thread, which represents the program's main path of execution.

· Garbage collected. Java programs do their own garbage collection, which means that programs are not required to delete objects that they allocate in memory. This relieves programmers of virtually all memory-management problems.

· Robust. Because the Java interpreter checks all system access performed within a program, Java programs cannot crash the system. Instead, when a serious error is discovered, Java programs create an exception. This exception can be captured and managed by the program without any risk of bringing down the system.

· Secure. The Java system not only verifies all memory access but also ensures that no viruses are hitching a ride with a running applet. Because pointers are not supported by the Java language, programs cannot gain access to areas of the system for which they have no authorization.

· Extensible. Java programs support native methods, which are functions written in another language, usually C++. Support for native methods enables programmers to write functions that may execute faster than the equivalent functions written in Java. Native methods are dynamically linked to the Java program; that is, they are associated with the program at runtime. As the Java language is further refined for speed, native methods will probably be unnecessary.

· Well-understood. The Java language is based upon technology that's been developed over many years. For this reason, Java can be quickly and easily understood by anyone with experience with modern programming languages such as C++.

As one can tell from the preceding list of features, a great deal of thought went into creating a language that would be fairly easy to use but still provide the most powerful features of a modern language like C++. Thanks to features such as automatic garbage collection, programmers can spend more time developing their programs rather than wasting valuable man-hours hunting for hard-to-find memory-allocation bugs. However, features such as Java's object-oriented nature, as well as its ability to handle multiple threads of execution, ensure that the language is both up-to-date and powerful.

The Java Developer's Kit

Java is actually more than a computer language; it's also a programming environment that includes a complete set of programming tools. These tools include a compiler, an interpreter, a debugger, a disassembler, a profiler, and more. To create a Java program, first use a text editor to create the source-code file. Users write the source code, of course, in the Java language. After completing the source code, which is always saved with a .java file extension, compile the program into its byte-code format, the file for which has the .class file extension. It is the .class file that the interpreter loads and executes. Because the byte-code files are fully portable between operating systems, they can be executed on any system that has a Java interpreter.

After compiling and running a Java program, one may discover that the source code needs modification. The Java debugger can help to find errors, whereas the Java profiler provides handy information about program. If users run into a compiled Java program that like to see in source-code form, the Java disassembler will do the translation. Java also includes a program that creates the files need to take advantage of native methods (functions written in another language, such as C++). There's even a program that can create HTML documents from Java source-code files. Although all the development tools are DOS applications-that is, they don't run under Windows-they provide a complete environment for creating and managing Java projects.

The development environment for Java is surprisingly rich, especially considering that the Java programming language is fairly new. Most Java developers and programmers find that the JDK contains everything they need to get started creating powerful Java programs. This is because the developer's kit includes the Java programming language core functionality, the Java Application Programming Interface (API) complete with multiple package sets, and essential tools for creating Java programs.

The Java Developer's Kit is currently available for most operating systems. One can obtain the Sun Solaris, Windows 95/NT, and Macintosh versions directly from JavaSoft. Because the Java Soft FTP site is extremely busy.

The heart of the Java programming language is contained in a set of packages called java.lang, which is a part of the Java Application Programming Interface. Although the java.lang package provides the core functionality of the Java programming language, it is not the only package included in the Java Developer's Kit.

The JDK includes the following packages: java.applet, java.awt, java.awt.image, java.awt.peer, java.io, java.lang, java.net, and java.util. These packages provide everything to start creating powerful Java applications quickly. The JDK also includes an additional package called sun.tools.debug, which is designed to make the application-debugging process easier.

.
	Package
	Package Name
	Description

	java.applet
	Applet
	A set of classes that relate to the applet environment and are generally used when viewing applets

	java.awt
	Abstract Windowing Toolkit
	A set of classes that provide graphical interface tools such as buttons, controls, scrollbars, and windows

	java.awt.image
	AWT Image
	A set of classes related to using images

	java.awt.peer
	AWT Peer
	A set of classes for AWT peer classes and methods

	java.sql
	Database connectivity
	A set of classes that enable developers to write Java applications that access databases

	java.io
	I/O
	A set of classes that provide standard input/output and file I/O utilities

	java.lang
	Language
	The core set of classes for the Java language that provide basic functions, such as string and array handling

	java.net
	Network
	A set of classes that provide tools for accessing networks by protocols, such as FTP, Telnet, and HTTP

	java.util
	Utility
	A set of classes that provide core utility functions such as encoding/decoding, hash tables, and stacks

	sun.tools.debug
	Debug
	A set of classes that provide debugging functions and tools

Java Programs

Java is first and foremost an object-oriented programming language. Many programmers are surprised when they discover how easy it is to follow sound object-oriented design practices with Java. Java can be used to create two types of programs: applets and stand-alone applications. An Applet is simply a part of a Web page, just as an image or a line of text can be. Just as a browser takes care of displaying an image referenced in an HTML document, a Java-enabled browser locates and runs an Applet . When Java-capable Web browser loads the HTML document, the Java applet is also loaded and executed.

Using applets, one can do everything from adding animated graphics to our Web pages to creating complete games and utilities that can be executed over the Internet. Some applets that have already been created with Java include Bar Chart, which embeds a configurable bar chart in an HTML document; Crossword Puzzle, which enables users to solve a crossword puzzle on the Web; and LED Sign, which presents a scrolling, computerized message to viewers of the Web page within which the applet is embedded.

Local and Remote Applets

One of Java's major strengths is that one can use the language to create dynamic content for your Web pages. That is, thanks to Java applets, Web pages are no longer limited to the tricks one can perform with HTML. Now Web pages can do just about anything users want them to. All need to do is write the appropriate applets.

But writing Java applets is only half the story. How Web page's users obtain and run the applets is equally as important. It's only write the applet (or use someone else's applet), but also to provide users access to the applet. Basically, Web pages can contain two types of applets: local and remote. In this section, one can learn the difference between these applet types, which are named after the location at which they are stored.

Local Applets:-A local applet is one that is stored on own computer system .When Web page must find a local applet, it doesn't need to retrieve information from the Internet-in fact, browser doesn't even need to be connected to the Internet at that time.

 [image: image3.png]
Figure – Applets/Application programs operate on Java Virtual Machine

Remote Applets:-

A remote applet is one that is located on another computer system. This computer system may be located in the building next door or it may be on the other side of the world-it makes no difference to Java-compatible browser. No matter where the remote applet is located, it's downloaded onto computer via the Internet. Browser must, of course, be connected to the Internet at the time it needs to display the remote applet.

To reference a remote applet in Web page, users must know the applet's URL (where it's located on the Web) and any attributes and parameters that users need to supply in order to display the applet correctly. If users didn't write the applet, they’ll need to find the document that describes the applet's attributes and parameters. The applet’s author usually writes this document. It composes an HTML <applet> tag that accesses a remote applet.

The Primary Characteristics of Java

The ease with which one can transition to Java from C/C++ and Java's object-oriented capabilities are only the icing on the cake. Java has many powerful characteristics, most of which are

· Architecture-neutral

· Distributed

· Dynamic

· Interpreted and compiled

· Multithreaded

· Network-ready and compatible

· Object-oriented

· Portable

· Robust

· Secure

These characteristics are the source of Java's power and the reason for Java's widespread popularity. Many of these characteristics are interrelated and are a direct outgrowth of Java's development for the following:

· Distributed networked environments

· High performance

· Easy reuse of code

· Security

Object-Oriented Programming

Object-oriented programming enables to think of program elements as objects. In the case of a window object, users don't need to know the details of how it works, nor do users need to know about the window's private data fields. Users need to know only how to call the various functions (called methods in Java) that make the window operate. Consider the car object discussed in the previous section. To drive a car, users don't have to know the details of how a car works. Users need to know only how to drive it. What's going on under the hood is none of business. (And, if one casually try to make it your business, plan to face an amused mechanic who will have to straighten out mess)

But OOP is a lot more than just a way to hide the details of a program. To learn about OOP, one needs to understand three main concepts that are the backbone of OOP. These concepts, which are covered in the following sections, are: encapsulation, inheritance, and polymorphism.

Objects

The fundamental unit in object-oriented programming is the object. Languages that follow object-oriented concepts describe the interaction among objects. All objects have a state and a behavior.

The state of an object pertains to data elements and their associated values. Everything the object knows about these elements and values describes the state of the object. Data elements associated with objects are called instance variables.

The behavior of an object depends on the actions the object can perform on the instance variables defined within the object. In procedural programming, such a construct would be called a function. In object-oriented terminology, this construct is called a method. A method belongs to the class it is a member of, and one can use a method when he need to perform a specific action more than once.

Thus, the state of an object depends on the things the object knows, and the behavior of the object depends on the actions the object can perform. If user creates a software object that models the television, the object would have variables describing the television's current state, such as it is on, the current channel setting is 8, the current volume setting is 23, and there is no input coming from the remote control. The object would also have methods that describe the permissible actions, such as turn the television on or off, change the channel, change the volume, and accept input from the remote control.

Encapsulation

One major difference between conventional structured programming and object-oriented programming is a handy thing called encapsulation. Encapsulation enables to hide, inside the object, both the data fields and the methods that act on that data. (In fact, data fields and methods are the two main elements of an object in the Java programming language.) After do this, users can control access to the data, forcing programs to retrieve or modify data only through the object's interface. In strict object-oriented design, an object's data is always private to the object. Other parts of a program should never have direct access to that data.

How does this data hiding differ from a structured-programming approach? After all, one can always hide data inside functions, just by making that data local to the function. A problem arises; however, when one want to make the data of one function available to other functions. The way to do this in a structured program is to make the data global to the program, which gives any function access to it. It seems that users could use another level of scope-one that would make your data global to the functions that need it-but still prevent other functions from gaining access. Encapsulation does just that. In an object, the encapsulated data members are global to the object's methods, yet they are local to the object. They are not global variables.

Classes as Data Types

An object is just an instance of a data type. For example, when you declare a variable of type int, you're creating an instance of the int data type. A class is like a data type in that it is the blueprint upon which an object is based. When users need a new object in a program, one can create a class, which is a kind of template for the object. Then, in program, users create an instance of the class. This instance is called an object.

Classes are really nothing more than user-defined data types. As with any data type, users can have as many instances of the class as users want. For example, users can have more than one window in a Windows application, each with its own contents.

Classes encapsulate objects. A single class can be used to instantiate multiple objects. This means that one can have many active objects or instances of a class. The object describing the functions of television is an instance of a class of objects called television.

 Each object within a class retains its own states and behaviors. By encapsulating objects within a class structure, one can group sets of objects by type. The Java Application Programming Interface (API) describes many classes. Each class in the API specifies a set of objects that perform related functions and share common characteristics. Classes programmer create can serve a similar purpose

For example, think again about the integer data type (int). It's absurd to think that a program can have only one integer. One can declare many integers, just about all. The same is true of classes. After one defines a new class, it can create many instances of the class. Each instance (called an object) normally has full access to the class's methods and gets its own copy of the data members.

Inheritance

Inheritance enables to create a class that is similar to a previously defined class, but one that still has some of its own properties. Consider a car-simulation program. Suppose that anyone have a class for a regular car, but now users want to create a car that has a high-speed passing gear. In a traditional program, users might have to modify the existing code extensively and might introduce bugs into code that worked fine before changes. To avoid these hassles, one can use the object-oriented approach: Create a new class by inheritance. This new class inherits all the data and methods from the tested base class. Users can control the level of inheritance with the public, private, and protected keywords.

Libraries

In C++ and other programming languages, a collection of related classes or functions is called a library. Java puts a twist on the concept of libraries by using the term package to describe a collection of related classes. Just as classes encapsulate objects, packages encapsulate classes in Java.

Polymorphism

The last major feature of object-oriented programming is polymorphism. By using polymorphism, one can create new objects that perform the same functions as the base object but which perform one or more of these functions in a different way. For example, user may have a shape object that draws a circle on the screen. By using polymorphism, one can create a shape object that draws a rectangle instead. User does this by creating a new version of the method that draws the shape on the screen. Both the old circle drawing and the new rectangle-drawing method have the same name but accomplish the drawing in a different way.

Introduction to oracle
What is it?

· Command line SQL and PL\SQL language interface to the database

· It can be used as an interactive interface or it can be driven from scripts.

· Its equivalents in other databases are as:

· Ingres: SQL

· Sybase and SQLServer: isql

· IBM DB2:db2

· PostgresQL: psql

· MySQL:mysql

What is it for?

· Connect to Oracle

· Create, change, delete database objects and data

· Ad hoc query data objects and data

· Verify the functioning of your applications

Overview of Application Architecture

There are two common ways to architect a database: client/server or multitier. As internet computing becomes more prevalent in computing environments, many database management systems are moving to a multitier environment.

Client/Server Architecture

Multiprocessing uses more than one processor for a set of related jobs. Distributed processing reduces the load on a single processor by allowing different processors to concentrate on a subset of related tasks, thus improving the performance and capabilities of the system as a whole.

An Oracle database system can easily take advantage of distributed processing by using its client/server architecture. In this architecture, the database system is divided into two parts: a front-end or a client, and a back-end or a server.

The Client

The client is a database application that initiates a request for an operation to be performed on the database server. It requests, processes, and presents data managed by the server. The client workstation can be optimized for its job. For example, it might not need large disk capacity, or it might benefit from graphic capabilities.

Often, the client runs on a different computer than the database server, generally on a PC. Many clients can simultaneously run against one server.

The Server

The server runs Oracle software and handles the functions required for concurrent, shared data access. The server receives and processes the SQL and PL/SQL statements that originate from client applications. The computer that manages the
server can be optimized for its duties. For example, it can have large disk capacity and fast processors.

Multitier Architecture: Application Servers

A multitier architecture has the following components:

· A client or initiator process that starts an operation

· One or more application servers that perform parts of the operation. An application server provides access to the data for the client and performs some of the query processing, thus removing some of the load from the database server. It can serve as an interface between clients and multiple database servers, including providing an additional level of security.

· An end or database server that stores most of the data used in the operation

This architecture enables use of an application server to do the following:

· Validate the credentials of a client, such as a Web browser

· Connect to an Oracle database server

· Perform the requested operation on behalf of the client

If proxy authentication is being used, then the identity of the client is maintained throughout all tiers of the connection.

Overview of Physical Database Structures

The following sections explain the physical database structures of an Oracle database, including datafiles, redo log files, and control files.

Data files

Every Oracle database has one or more physical datafiles. The datafiles contain all the database data. The data of logical database structures, such as tables and indexes, is physically stored in the datafiles allocated for a database.

The characteristics of data files are:

· A data files can be associated with only one database.

· Datafiles can have certain characteristics set to let them automatically extend when the database runs out of space.

· One or more data files form a logical unit of database storage called a table space.

Data in a data files is read, as needed, during normal database operation and stored in the memory cache of Oracle. For example, assume that a user wants to access some data in a table of a database. If the requested information is not already in the memory cache for the database, then it is read from the appropriate datafiles and stored in memory.

Modified or new data is not necessarily written to a data file immediately. To reduce the amount of disk access and to increase performance, data is pooled in memory and written to the appropriate data files all at once, as determined by the database writer process (DBWn) background process.

Java Data Base Connectivity (JDBC)

Sun developed a single API for data base access-JDBC. They kept three main goals in mind:

1.
JDBC should be a SQL-Level API.

2.
JDBC should capitalize on the experience of existing database API’s.

3.
JDBC should be simple.

JDBC is a SQL level API that allows you to embed SQL statements as arguments to the methods in JDBC interface. To enable you to do this in a database independent fashion, JDBC requires database venders to furnish a runtime implementation of its interface. These implementations route your SQL calls to the database in the proprietary fashion it recognizes.

Java provides database programmers with the following features they have traditionally lacked:

1. Easy object to relational mapping.

2.Database independence.

3.Distributed computing.

Java’s database connectivity allows you to worry about the translation of relational data into objects instead of worrying about how you are getting that data. The JVM provides an application with a guaranteed runtime environment; no administration is needed for the configuration of that environment for individual applications.

JDBC architecture as follows:

1.JDBC Driver Manager.

2.JDBC Driver.

3.JDBC-ODBC Bridge.

4.Application.

JDBC ARCHITECTURE

	APPLICATION

	JDBC NET DRIVER

	JDBC NATIVE DRIVER

	JDBC DRIVER MANAGER

	NATIVE PROTOCOL JDBC DRIVER

	JDBC ODBC DRIVER

	ODBC

->Appln(JDBC(JDBC-ODBC Driver(ODBC->Database

JDBC DriverManager: Function of the driver manager is to find out available drivers in the system and connect the application to the appropriate database, whenever a connection is requested. However, to help the driver manager identify different types of drivers, each driver should be registered with the driver manager.

JDBC Driver: Function of the JDBC Driver is to accept the SQL calls from the application and convert them into native calls to the database. However, in this process it may take help from some other drivers or even servers, which depends on the type of JDBC Driver. It also is possible that the total functionality of the database server could be built into the driver itself.

JDBC-ODBC Bridge: Sun soft provides a special JDBC Driver called JDBC-ODBC Bridge driver, which can be used to connect to any existing database, that is ODBC complaint.

Application: Application is a java program that needs the information to be modified in some database or wants to retrieve the information.

CREATING A CONNECTION and CONNECTING A DATABASE:

Java.Sql.Driver: JDBC is a launching point for data base connectivity by responding to driver Manager. Driver Manager connection requests and providing information about the implementation in question.

Java.Sql.DriverManager: DriverManager is class instead of an interface. Its main responsibilities are to maintain the list of Driver implementation and present an application with one that matches a requested URL. The driver manager provides register Driver () and deregister Driver (), which allow the Driver implementation to register itself with the Driver Manager or remove itself from that list. You can get an enumeration of register drivers through the getDriver().

Java.Sql.Connection: The Connection class represents a single logical database connection. In other words we use the connection class for sending a series of sql statement to the database and managing the committing or aborting of those statements.

PreparedStatement: The prepared Statement enables sql statements to contain the parameters like a function definition and can execute a single statement repeatedly with different values for those parameters. The act of assigning values to parameters is called binding parameters. You might want to use a prepared statement in updating a group of objects stored on same table.

This interface is used to retrieve the data from the database in second form. This interface will prepare a SKELTON statement at compile time. To execute the SKELTON we have to set the values for the statement and execute it at run time.

REQUIREMENT SPECIFICATIONS

Interface Requirements:

The interface for this system will be a window based software and a database system which can handle huge amount of data as records.

User Interface:

The user interface for this Materials Resource Planning System will be forms that can be generated by Visual Basic, HTML, java-awt, etc.

Hardware Interface:

The minimum hardware required in the making of the software is network based system with Pentium Processor, 128 MB RAM, 512 KB Cache Memory,5 GB Disk Space, basic input, output devices.

Software Interface:

The software, obviously relates to the various kinds of software required in the successful completion of the project.

The software required for the completion of this project are

 Oracle (RDBMS)

Oracle is used as backend for the project and visual basic as the front end.

 Performance Requirements:

The Materials Resource Management System requires a high speed Processor and error free software for fast and accurate processing of the system.

Logical Database Requirements:

A good Database must be installed which has the capacity of storing the large number of records and high accessibility.

Software System Attributes:

Some of the Attributes of the system includes:

· Reliability

· Portability

· Security

· High availability

· Maintainability

SPECIFIC REQUIREMENTS:

 Interface Requirements:

The interfaces for this system will interactive software, Java and a database system which can handle huge amount of data as records.

 User Interface:

The user interface for this RRO System will be a Java and forms that can be generated by java-awt, etc.

 Hardware Interface:

The minimum hardware required is Pentium 133MHZ Processor, 64MB RAM, 20GB Disk Space, basic input, output devices.

 2.4.3.1.3 Software Interface:

The software interface for this system will be any Windows Operating System, Java JDK1.2.2 OR I.3, ODBC data sources and JDBC-ODBC drivers ACCESS Database.

DFDS

[image: image4.emf]VIEW STOCK 4.14.1.1ITEM INFOITEMSITEMS DATAVIEW STOCK

[image: image5.emf]5.2.1ITEM WISESALES5.2.2PERIODIC WISEREQUESTREPORTS 5.2

[image: image6.emf]VIEW ADD ITEMS REQUESTED 5.35.3.1REQ IINFO5.3.2SELECT RID5.3.3SET STATUS5.3.4UPDATEREQUESTED ITEMS

[image: image7.emf]VIEW REMOVAL ITEMS REQUESTED 5.45.4.1REQ IINFO5.4.2SELECT RID5.4.3SET STATUS5.4.4UPDATEREMOVAL ITEMS

DESIGN
Unified Modeling Language:

 The Unified Modeling Language allows the software engineer to express an analysis model using the modeling notation that is governed by a set of syntactic semantic and pragmatic rules.

 A UML system is represented using five different views that describe the system from distinctly different perspective. Each view is defined by a set of diagram, which is as follows.

User Model View

· This view represents the system from the users perspective.

· The analysis representation describes a usage scenario from the end-users perspective.

Structural model view

· In this model the data and functionality are arrived from inside the system.

· This model view models the static structures.

Behavioral Model View

· It represents the dynamic of behavioral as parts of the system, depicting the interactions of collection between various structural elements described in the user model and structural model view.

Implementation Model View

· In this the structural and behavioral as parts of the system are represented as they are to be built.

Environmental Model View

· In this the structural and behavioral aspects of the environment in which the system is to be implemented are represented.

UML is specifically constructed through two different domains they are:

· UML Analysis modeling, this focuses on the user model and structural model views of the system.

· UML design modeling, which focuses on the behavioral modeling, implementation modeling and environmental model views.

USE-Case Diagram:
 Use case Diagrams represent the functionality of the system from a user’s point of view. Use cases are used during requirements elicitation and analysis to represent the functionality of the system. Use cases focus on the behavior of the system from external point of view.

Actors are external entities that interact with the system. Examples of actors include users like administrator, bank customer …etc., or another system like central database.

UML DIAGRAM

[image: image8.png]
CLASS DIAGRAM

[image: image9.emf]MANAGER

varchar userID

varchar password

public login()

public verfy()

public check()

BACKLOGIC

manager m1

interface I1

connect()

send_info()

INTERFACE

textbox t1

textbox t2

button B1

manager m1

logincheck()

connect DB()

SEQUENCE DIAGRAM

[image: image10.png]
COLLABORATION DIAGRAM

[image: image11.png]
IMPLEMENTATION

The project is implemented using the JAVA programming language. The implementation details of the project are as follows
The methods that we have used are as follows:

1. Login

2. Action performed

3. Show message

4. Gettext

5. Settext

6. Windowadpter

7. Add

8. Setfont

9. Setlayout

10. Getsource

11. Getstring
12. Getconnection

13. Executequery

14. Forname

15. Getruntime

16. exec

SCREEN SHOTS

[image: image12.jpg]
[image: image13.jpg]
[image: image14.jpg]
[image: image15.jpg][image: image16.jpg][image: image17.jpg][image: image18.jpg][image: image19.jpg][image: image20.jpg][image: image21.jpg][image: image22.jpg][image: image23.jpg][image: image24.jpg][image: image25.jpg]
TESTING

TESTING METHODS USED

The development of software involves a series of production activities where opportunities for injecting of human fallibility are enormous. Because of human inability to perform and communicate with the perfection, software development is accompanied by a quality assurance activity.

Performance testing was not taken for consideration as the available hardware is of minimum required configuration.

Software Testing Techniques

The Test Case design methods used are:

1. WHITE BOX TESTING

2. BLACK BOX TESTING

1) WHITE BOX TESTING

· Using this testing method it was assured that all the independent paths were exercised atlas once.

· All the logical decisions on their True and False sides were executed.

· Statement Coverage Criteria was taken into accounts and was ensured that every statement was executed atlas once.

2) BALCK BOX TESTING

· Using this technique incorrect and missing functions were identified and corrected.

· Interfacing errors, initialization errors and termination errors were also found using this technique.

· The errors uncovered during the testing were analyzed and fixed and documented for the future use.

DIFFERENT LEVELS OF TESTING

A strategy for the software testing integrates test case design techniques into a well-planned series of steps that results in the successful construction of software. Any testing strategy must incorporate test planning, test execution and resultant data collection and evaluation.

Unit testing and integration testing were the performance of the system and the output was a expected and consistent.

· Unit Testing

 Unit testing focuses verification efforts on the smallest unit of software

 design. Each of
the modules was verified individually for errors.

· Integration Testing

Integration testing is a systematic technique for constructing the program structure while at same time conducting tests to uncover errors associated with interfacing. Here unit-testing modules were taken and the program structure that was specified in the design was built and then testing was carried out.

USER INTERFACE TESTING

User interface design plays a major part in the success of the project. Keeping in mind the system was developed and ease-of-use aspect was maintained in the design of system. All the modules were tested exhaustively and the encountered errors were rectified. The form design was on par with the existing form design and hence the reduction of strain results. The validation error messages were simple and unambiguous.

All internal data structures are assured their validity.

Black box testing

Black box testing method focuses on functional requirements of the software to enable the software engineer to derive sets of input conditions that will fully exercise all function requirements of a program.

· Using this technique incorrect and missing functions were identified and corrected.

· Errors in Data Structures or external database access were also corrected.

· Interfacing errors, initialization errors and termination errors were also found using this technique.

The errors uncovered during the testing were analyzed and fixed and documented for the future use.

DIFFERENT LEVELS OF TESTING

A strategy for software testing integrates software test case design techniques into a well-planned series of steps that results in the successful construction of software. Any testing strategy must incorporate test-planning, test case Design, test execution and the resultant data collection and evaluation.

Unit testing and integration testing were the performed of the system and the outputs were expected and consistent.

a) UNIT TESTING

Using testing focuses on verification effort on the smallest unit of software design. The unit test considerations that were taken are:

· Integrity of local data structures.

· Interface

· Boundary conditions

· Independent paths

· Error handling paths

· Unreachable codes

b) INTEGRATION TESTING

Integration testing is a systematic technique for constructing the program structure while at the same time conducting tests to uncover errors associated with interfacing.

Here unit tested modules were taken and the program structure that was specified in the design was built and then testing was carried out. The bottom up approach was applied and the stubs were created wherever necessary.

User interface design plays a major part in the success of the project. Keeping in mind the system was developed and ease-of-use aspect was maintained in the design forms. All the forms were tested exhaustively and the encountered were rectified. The form design was on par with the existing form design hence reduction in the strain caused. The validation error messages were simple and unambiguous.

REFERENCES

References for the Project Development Were Taken From the following Books and Web Sites.

JAVA Technologies:

JAVA Complete Reference

 Java Script Programming : Yehuda Shiran

 Mastering JAVA Security

JAVA2 Networking : Pistoria

JAVA Security : Scotl oaks

 Head First EJB Sierra Bates

J2EE Professional : Shadab siddiqui

JAVA server pages : Larne Pekowsley

JAVA Server pages : Nick Todd

JDBC:

Java Database Programming with JDBC : Patel moss.

SOFTWARE ENGINEERING:

Software Engineering : Roger Pressman
PAGE
61

5.2.1

ITEM WISE

SALES

5.2.2

PERIODIC WISE

REQUEST

REPORTS 5.2

VIEW STOCK 4.1

 4.1.1

 ITEM INFO

 ITEMS

 ITEMS DATA

 VIEW STOCK

VIEW ADD ITEMS REQUESTED 5.3

5.3.1

REQ IINFO

5.3.2

SELECT RID

5.3.3

SET STATUS

5.3.4

UPDATE

REQUESTED ITEMS

VIEW REMOVAL ITEMS REQUESTED 5.4

5.4.1

REQ IINFO

5.4.2

SELECT RID

5.4.3

SET STATUS

5.4.4

UPDATE

REMOVAL ITEMS

