
1

JavaServer Pages(TM) Tutorial

Welcome to the JavaServer PagesTM (JSPTM) technology, the cross-platform method of

generating dynamic content for the Web.

If you have reached this learn-by-example tutorial, you are probably new to the

technology. You might be a Web developer or enterprise developer who wants to use

JavaServer Pages to develop dynamic Web applications. The sections in this tutorial

contain a series of topics and example applications that teach you how to use the

essential features of JavaServer Pages technology:

■ “A First JSP Application” on page 4

■ “Handling HTML Forms” on page 7

■ “Using Scripting Elements” on page 18

■ “Handling Exceptions” on page 26

2 JavaServer Pages Tutorial

Installing and Running the Example
Applications

The example applications described in this tutorial are packaged so that they can be

easily installed and run on the Tomcat JSP and server implementation. To run the

examples:

1. Download and install Tomcat

2. Download the example applications

The complete binary and source code for three of the examples are packaged in

the Web application archives helloworld.war , hellouser.war , and

email.war , contained in the zip archive examples.zip. To install the

applications in Tomcat, download examples.zip into the directory

TOMCAT_HOME/ webapps and unzip the archive. The fourth example, number
guess , is already installed in Tomcat in the directory TOMCAT_HOME/webapps/
examples/jsp/num .

3. Configure Tomcat for the example applications

When an archived Web application is accessed, Tomcat 3.2 automatically unpacks

it into the directory TOMCAT_HOME/webapps /appName and adds the context for

each archive to the server startup file. If you are using an earlier version of

Tomcat you will need to:

■ Unpack the Web application archive with the command jar xvf
appName.war.

■ Add the following line to the file TOMCAT_HOME/conf/server.xml for each

application:

<Context path="/appName" docBase="webapps/appName" debug="0"
reloadable="true" />

When a Web application archive is unpacked, its contents are deposited into the

directories listed in the following table. This directory layout is required by the

Java Servlet specification and is one that you usually will use while developing an

application.

Directory Contents

appName JSP, HTML, and image files

appName/WEB-INF/classes classes accessed by JSP files

http://jakarta.apache.org/tomcat
http://java.sun.com/products/jsp/examples/examples.zip
http://java.sun.com/products/servlet/download.html

Installing and Running the Example Applications 3

4. Open the URL of the first page of each example in a Web browser:

■ http://localhost:8080/helloworld/helloworld.jsp
■ http://localhost:8080/hellouser/hellouser.jsp
■ http://localhost:8080/examples/jsp/num/numguess.jsp
■ http://localhost:8080/email/email.jsp

http://localhost:8080/helloworld/helloworld.jsp
http://localhost:8080/hellouser/hellouser.jsp
http://localhost:8080/examples/jsp/num/numguess.jsp
http://localhost:8080/email/email.jsp

4 JavaServer Pages Tutorial

A First JSP Application

FIGURE 1-1 shows what is perhaps the simplest JSP application one could write. It

continues the illustrious computer science Hello, World tradition. CODE EXAMPLE 1-1

and CODE EXAMPLE 1-2 show how the example is put together.

FIGURE 0-1 Duke Says Hello

CODE EXAMPLE 0-1 The Duke Banner (dukebanner.html)

<table border="0" width="400" cellspacing="0" cellpadding="0">
<tr>
<td height="150" width="150"> </td>
<td width="250"> </td>
</tr>

<tr>
<td width="150"> </td>
<td align="right" width="250">

</td>
</tr>

</table>

http://localhost:8080/email/email.jsp

A First JSP Application 5

CODE EXAMPLE 0-2 The JSP Page (helloworld.jsp)

<%@ page info="a hello world example" %>

<html>
<head><title>Hello, World</title></head>

<body bgcolor="#ffffff" background="background.gif">
<%@ include file="dukebanner.html" %>

<table>
<tr>
<td width=150> </td>
<td width=250 align=right>
<h1>Hello, World!</h1> </td>
</tr>
</table>

</body>
</html>

The Page Directive

The page directive is a JSP tag that you will use in almost every JSP source file you

write. In helloworld.jsp, it’s the line that looks like this:

<%@ page info="a hello world example" %>

The page directive gives instructions to the JSP container that apply to the entire JSP

source file. In this example, page specifies an informative comment that will become

part of the compiled JSP file. In other cases, page might specify the scripting

language used in the JSP source file, packages the source file would import, or the

error page called if an error or exception occurs.

You can use the page directive anywhere in the JSP file, but it’s good coding style to

place it at the top of the file. Because it’s a JSP tag, you can even place it before the

opening <html> tag.

The Include Directive

The include directive inserts the contents of another file in the main JSP file, where

the directive is located. It’s useful for including copyright information, scripting

language files, or anything you might want to reuse in other applications. In this

example, the included file is an HTML table that creates a graphic banner.

6 JavaServer Pages Tutorial

You can see the content of the included file by viewing the page source of the main

JSP file while you are running Hello, World. The included file does not contain

<html> or <body> tags, because these tags would conflict with the same tags in the

calling JSP file.

A Note About the JSP Tags

As you use the examples in this chapter, remember that the JSP tags are case

sensitive. If, for example, you type <%@ Page %>, instead of <%@ page %>, your

tag will not be recognized, and the JSP implementation will throw an exception.

Some of the attributes on the tags take class names, package names, pathnames or

other case-sensitive values as well.

If you have any doubts about the correct spelling or syntax of any JSP tag, see the

JavaServer Pages Syntax Card.

How To Run the Example

Install the example as described in “Installing and Running the Example

Applications” on page 2. Then, open a Web browser and go to:

http://localhost:8080/helloworld/helloworld.jsp

http://java.sun.com/products/jsp/pdf/card11.pdf
http://localhost:8080/helloworld/helloworld.jsp

Handling HTML Forms 7

Handling HTML Forms

One of the most common parts of an electronic commerce application is an HTML

form in which a user enters some information. The information might be a

customer’s name and address, a word or phrase entered for a search engine, or a set

of preferences gathered as market research data.

What Happens to the Form Data

The information the user enters in the form is stored in the request object, which is

sent from the client to the JSP container. What happens next?

FIGURE 1-2 represents how data flows between the client and the server (at least

when you use Tomcat; other JSP containers may work a little differently).

FIGURE 0-2 How Data is Passed Between the Client and the Server

The JSP container sends the request object to whatever server-side component

(JavaBeansTM component, servlet, or enterprise bean) the JSP file specifies. The

component handles the request, possibly retrieving data from a database or other

data store, and passes a response object back to the JSP container. The JSP

container passes the response object to the JSP page, where its data is formatted

Component

response
request

Client

JSP Container &

Component

request
request

JSP File

response

response

Web Server

http://localhost:8080/helloworld/helloworld.jsp

8 JavaServer Pages Tutorial

according the page’s HTML design. The JSP container and Web server then send the

revised JSP page back to the client, where the user can view the results in the Web

browser. The communications protocol used between the client and server can be

HTTP, or it can be some other protocol.

The request and response objects are always implicitly available to you as you

author JSP source files. The request object is discussed in more detail later in this

tutorial.

How To Create a Form

You typically define an HTML form in a JSP source file, using JSP tags to pass data

between the form and some type of server-side object (usually a bean). In general,

you do the following things in your JSP application:

1. Start writing a JSP source file, creating an HTML form and giving each form

element a name.

2. Write the bean in a .java file, defining properties, get, and set methods that

correspond to the form element names (unless you want to set one property value

at a time explicitly).

3. Return to the JSP source file. Add a <jsp:useBean> tag to create or locate an

instance of the bean.

4. Add a <jsp:setProperty> tag to set properties in the bean from the HTML

form (the bean needs a matching set method).

5. Add a <jsp:getProperty> tag to retrieve the data from the bean (the bean

needs a matching get method).

6. If you need to do even more processing on the user data, use the request object

from within a scriptlet.

The Hello, User example will make these steps more clear.

Handling HTML Forms 9

A Dynamic Hello Application

The Hello, User JSP application shown in FIGURE 1-3 and FIGURE 1-4 expands on the

Hello, World application. The user has an opportunity to enter a name into a form

and the JSP page generates a new page that displays the name.

FIGURE 0-3 The User Enters a Name

FIGURE 0-4 Then Duke Says Hello

10 JavaServer Pages Tutorial

Example Code

CODE EXAMPLE 1-3, CODE EXAMPLE 1-4, CODE EXAMPLE 1-5, and CODE EXAMPLE 1-6

contain the code for the Duke banner, main JSP page, response JSP page, and

JavaBeans component that handles the name input.

CODE EXAMPLE 0-3 The Duke Banner (dukebanner.html)

<table border="0" width="400" cellspacing="0" cellpadding="0">
<tr>
<td height="150" width="150"> </td>
<td width="250"> </td>
</tr>
<tr>
<td width="150"> </td>
<td align="right" width="250">
</td>
</tr>
</table>

CODE EXAMPLE 0-4 The Main JSP File (hellouser.jsp)

<%@ page import="hello.NameHandler" %>

<jsp:useBean id="abean" scope="page" class="hello.NameHandler" />
<jsp:setProperty name="abean" property="*" />

<html>

<head><title>Hello, User</title></head>
<body bgcolor="#ffffff" background="background.gif">

<%@ include file="dukebanner.html" %>

Handling HTML Forms 11

<table border="0" width="700">
<tr>
<td width="150"> </td>
<td width="550">
<h1>My name is Duke. What’s yours?</h1>
</td>
</tr>

<tr>
<td width="150" </td>
<td width="550">
<form method="get">
<input type="text" name="username" size="25">

<input type="submit" value="Submit">
<input type="reset" value="Reset">
</td>
</tr>
</form>
</table>

<%
if (request.getParameter("username") != null) {

%>
<%@ include file="response.jsp" %>

<%
}

%>

</body>
</html>

12 JavaServer Pages Tutorial

CODE EXAMPLE 0-5 The Response File (response.jsp)

<table border="0" width="700">

<tr>
<td width="150">

</td>

<td width="550">
<h1>Hello, <jsp:getProperty name="abean" property="username" />!
</h1>

</td>
</tr>
</table>

CODE EXAMPLE 0-6 The Bean That Handles the Form Data (namehandler.java)

package hello;

public class NameHandler {

private String username;

public NameHandler() {
username = null;

}

public void setUsername(String name) {
username = name;

}

public String getUsername() {
return username;

}

}

Handling HTML Forms 13

Constructing the HTML Form

An HTML form has three main parts: the opening and closing <form> tags, the

input elements, and the Submit button that sends the data to the server. In an

ordinary HTML page, the opening <form> tag usually looks something like this:

<form method=get action= someURL>

In a JSP application, the action attribute specifies the component or JSP file that

will receive the data the user enters in the form. You can omit the action attribute

if you want the data processed by the object specified in the <jsp:useBean> tag.

(This is similar to using action in other Web applications, where it specifies a CGI

script or other program that will process the form data.)

The rest of the form is constructed just like a standard HTML form, with input

elements, a Submit button, and perhaps a Reset button. Be sure to give each input

element a name, like this:

<input type="text" name="username" >

Using the GET and POST Methods

The HTTP GET and POST methods send data to the server. In a JSP application, GET

and POST send data to the server. (The data, along with the rest of the JSP

application is compiled into a Java servlet that returns a response to the client Web

browser; for more information, see “How the JSP Page Is Compiled” on page 16.)

In theory, GET is for getting data from the server and POST is for sending data there.

However, GET appends the form data (called a query string) to an URL, in the form

of key/value pairs from the HTML form, for example, name=John . In the query

string, key/value pairs are separated by & characters, spaces are converted to +

characters, and special characters are converted to their hexadecimal equivalents.

Because the query string is in the URL, the page can be bookmarked or sent as email

with its query string. The query string is usually limited to a relatively small number

of characters.

The POST method, however, passes data of unlimited length as an HTTP request

body to the server. The user working in the client Web browser cannot see the data

that is being sent, so POST requests are ideal for sending confidential data (such as a

credit card number) or large amounts of data to the server.

14 JavaServer Pages Tutorial

Writing the Bean

If your JSP application uses a bean, you can write the bean according to the design

patterns outlined in the JavaBeans component architecture, remembering these general

points:

■ If you use a <jsp:getProperty> tag in your JSP source file, you need a

corresponding get method in the bean.

■ If you use a <jsp:setProperty> tag in your JSP source file, you need one or

more corresponding set methods in the bean.

Setting properties in and getting properties from a bean is explained a bit more in

the next section.

Getting Data From the Form to the Bean

Setting properties in a bean from an HTML form is a two-part task:

■ Creating or locating the bean instance with <jsp:useBean>

■ Setting property values in the bean with <jsp:setProperty>

The first step is to instantiate or locate a bean with a <jsp:useBean> tag before you

set property values in the bean. In a JSP source file, the <jsp:useBean> tag must

appear above the <jsp:setProperty> tag. The <jsp:useBean> tag first looks for

a bean instance with the name you specify, but if it doesn’t find the bean, it

instantiates one. This allows you to create a bean in one JSP file and use it in another,

as long as the bean has a large enough scope.

The second step is to set property values in the bean with a <jsp:setProperty>
tag. The easiest way to use <jsp:setProperty> is to define properties in the bean

with names that match the names of the form elements. You would also define

corresponding set methods for each property. For example, if the form element is

named username , you would define a property username property and methods

getUsername and setUsername in the bean.

If you use different names for the form element and the bean property, you can still

set the property value with <jsp:setProperty> , but you can only set one value at

a time. For more information on the syntax variations of <jsp:setProperty> , see

the JavaServer Pages Syntax Card.

Checking the Request Object

The data the user enters is stored in the request object, which usually implements

javax.servlet.HttpServletRequest (or if your implementation uses a different

protocol, another interface that is subclassed from

javax.servlet.ServletRequest).

http://java.sun.com/products/javabeans
http://java.sun.com/products/jsp/pdf/card11.pdf

Handling HTML Forms 15

You can access the request object directly within a scriptlet. Scriptlets are discussed

in more detail in the next section, but for now it’s enough to know that they are

fragments of code written in a scripting language and placed within <%and %>
characters. In JSP version 1.1, you must use the Java programming language as your

scripting language.

You may find some of these methods useful with the request object:

You’ll find other methods as well, those defined in ServletRequest,
HttpServletRequest , or any subclass of ServletRequest that your

implementation uses.

The JSP container always uses the request object behind the scenes, even if you do

not call it explicitly from a JSP file.

Returning Data to the JSP Page

Once the user’s data has been sent to the server, you may want to retrieve the data

and display it in the JSP page. To do this, use the <jsp:getProperty> tag, giving

it the bean name and property name:

<h1>Hello, <jsp:getProperty name="abean" property="username"/>!

The bean names you use on the <jsp:useBean> , <jsp:setProperty> , and

<jsp:getProperty> tags must match, for example:

hellouser.jsp:
<jsp:useBean id="abean" scope="session" class="hello.NameHandler" />
<jsp:setProperty name="abean" property="*" />

Method Defined In Job Performed

getRequest javax.servlet.jsp.PageContext Returns the current

request object

getParameterNames javax.servlet.ServletRequest Returns the names of

the parameters

request currently

contains

getParameterValues javax.servlet.ServletRequest Returns the values of

the parameters

request currently

contains

getParameter javax.servlet.ServletRequest Returns the value of a

parameter if you

provide the name

16 JavaServer Pages Tutorial

response.jsp:
<h1>Hello, <jsp:getProperty name="abean" property="username"/>!

In this example, the tags are in two files, but the bean names still must match. If they

don’t, Tomcat throws an error, possibly a fatal one.

The response the JSP container returns to the client is within the implicit response
object, which the JSP container creates.

How the JSP Page Is Compiled

It is very important to understand how a JSP page is compiled when your user loads

it into a Web browser. The compilation process is illustrated in FIGURE 1-5.

FIGURE 0-5 How a JSP Page is Compiled

JSP File JSP File Graphics

.java file

.class file

Component

ServerClient

Data StoreWeb Browser
via HTTP or

other protocol

Data Store

Handling HTML Forms 17

First of all, a JSP application is usually a collection of JSP files, HTML files, graphics

and other resources. When the user loads the page for the first time, the files that

make up the application are all translated together, without any dynamic data, into

one Java source file (a .java file) with a name that your JSP implementation

defines. Then, the .java file is compiled to a .class file. In most implementations,

the .java file is a Java servlet that complies with the Java Servlet API. This entire

stage is known as translation time.

When the user makes a request of the JSP application (in this case, when the user

enters something in the form and clicks Submit), one or more of the application’s

components (a bean, enterprise bean, or servlet) handles data the user submits or

retrieves data dynamically from a data store and returns the data to the .java file

where it is recompiled in the .class file. The .class file, being a Java servlet,

returns the data to the client Web browser by its service method. When the user

makes a new request, the component obtains or handles the data again and returns

it to the .java file, which is compiled again into the .class file. This stage is

known as request time.

How to Run the Example

Install the example as described in “Installing and Running the Example

Applications” on page 2. Then, open a Web browser and go to:

http://localhost:8080/hellouser/hellouser.jsp

http://localhost:8080/hellouser/hellouser.jsp

18 JavaServer Pages Tutorial

Using Scripting Elements

At some point, you will probably want to add some good, old-fashioned program-

ming to your JSP files. The JSP tags are powerful and encapsulate tasks that would

be difficult or time-consuming to program. But even so, you will probably still want

to use scripting language fragments to supplement the JSP tags.

The scripting languages that are available to you depend on the JSP container you

are using. With Tomcat, you must use the JavaTM programming language for

scripting, but other vendors’ JSP containers may include support for other scripting

languages).

How To Add Scripting

First, you’ll need to know a few general rules about adding scripting elements to a

JSP source file:

1. Use a page directive to define the scripting language used in the JSP page (unless

you are using the Java language, which is a default value).

2. The declaration syntax <%! ... %> declares variables or methods.

3. The expression syntax <%= ... %> defines a scripting language expression and

casts the result as a String .

4. The scriptlet syntax <% ... %> can handle declarations, expressions, or any

other type of code fragment valid in the page scripting language.

5. When you write a scriptlet, end the scriptlet with %>before you switch to HTML,

text, or another JSP tag.

The Difference Between <%, <%=, and <%!

Declarations, expressions, and scriptlets have similar syntax and usage, but also

some important differences. Let’s explore the similarities and differences here, with

some examples.

Declarations (between <%! and %>tags) contain one or more variable or method

declarations that end or are separated by semicolons:

<%! int i = 0; %>
<%! int a, b; double c; %>
<%! Circle a = new Circle(2.0); %>

http://localhost:8080/hellouser/hellouser.jsp

Using Scripting Elements 19

You must declare a variable or method in a JSP page before you use it in the page.

The scope of a declaration is usually a JSP file, but if the JSP file includes other files

with the include directive, the scope expands to cover the included files as well.

Expressions (between <%=and %>tags) can contain any language expression that is

valid in the page scripting language, but without a semicolon:

<%= Math.sqrt(2) %>
<%= items[i] %>
<%= a + b + c %>
<%= new java.util.Date() %>

The definition of a valid expression is up to the scripting language. When you use

the Java language for scripting, what’s between the expression tags can be any

expression defined in the Java Language Specification. The parts of the expression are

evaluated in left-to-right order. One key difference between expressions and

scriptlets (which are described next and appear between <%and %>tags) is that a

semicolon is not allowed within expression tags, even if the same expression

requires a semicolon when you use it within scriptlet tags.

Scriptlets (between <%and %>tags) allow you to write any number of valid

scripting language statements, like this:

<%
String name = null;
if (request.getParameter("name") == null) {

%>

Remember that in a scriptlet you must end a language statement with a semicolon if

the language requires it.

When you write a scriptlet, you can use any of the JSP implicit objects or classes

imported by the page directive, declared in a declaration, or named in a

<jsp:useBean> tag.

20 JavaServer Pages Tutorial

The Number Guess Game

The Number Guess game makes good use of scriptlets and expressions, as well as

using the knowledge of HTML forms you gained in the last example.

FIGURE 0-6 About to Guess a Number

Using Scripting Elements 21

Example Code

CODE EXAMPLE 0-7 Displaying the Number Guess Screen (numguess.jsp)

<!--
Number Guess Game
Written by Jason Hunter, CTO, K&A Software
jasonh@kasoftware.com, http://www.servlets.com
Copyright 1999, K&A Software
Distributed by Sun Microsystems with permission
-->

<%@ page import = "num.NumberGuessBean" %>

<jsp:useBean id="numguess" class="num.NumberGuessBean"
scope="session" />

<jsp:setProperty name="numguess" property="*" />

<html>
<head><title>Number Guess</title></head>
<body bgcolor="white">

<% if (numguess.getSuccess()) { %>

Congratulations! You got it.
And after just <%= numguess.getNumGuesses() %> tries.<p>

<% numguess.reset(); %>
Care to try again?

<% } else if (numguess.getNumGuesses() == 0) { %>

Welcome to the Number Guess game.<p>
I’m thinking of a number between 1 and 100.<p>

22 JavaServer Pages Tutorial

<form method=get>
What’s your guess? <input type=text name=guess>
<input type=submit value="Submit">
</form>

<% } else { %>

Good guess, but nope. Try <%= numguess.getHint() %> .
You have made <%= numguess.getNumGuesses() %> guesses.<p>

I’m thinking of a number between 1 and 100.<p>

<form method=get>
What’s your guess? <input type=text name=guess>
<input type=submit value="Submit">
</form>

<% } %>

</body>
</html>

CODE EXAMPLE 0-8 Handling the Guess (NumberGuessBean.java)

// Number Guess Game
// Written by Jason Hunter, CTO, K&A Software
// jasonh@kasoftware.com, http://www.servlets.com
// Copyright 1999, K&A Software
// Distributed by Sun Microsystems with permission

package num;

import java.util.*;
public class NumberGuessBean {

int answer;
boolean success;
String hint;
int numGuesses;

public NumberGuessBean() {
reset();

}

public void setGuess(String guess) {
numGuesses++;

int g;

Using Scripting Elements 23

try {
g = Integer.parseInt(guess);
}
catch (NumberFormatException e) {

g = -1;
}
if (g == answer) {

success = true;
}
else if (g == -1) {

hint = "a number next time";
}
else if (g < answer) {

hint = "higher";
}
else if (g > answer) {

hint = "lower";
}

}
public boolean getSuccess() {

return success;
}
public String getHint() {

return "" + hint;
}

public int getNumGuesses() {
return numGuesses;

}

public void reset() {
answer = Math.abs(new Random().nextInt() % 100) + 1;
success = false;
numGuesses = 0;

}
}

Using Scripting Elements in a JSP File

The file numguess.jsp is an interesting example of the use of scripting elements,

because it is structured as you might structure a Java programming language source

file, with a large if ... else statement within scriptlet tags. The difference is that

the body of each statement clause is written in HTML and JSP tags, rather than in a

programming language.

24 JavaServer Pages Tutorial

You are not required to write scriptlets mingled with HTML and JSP tags, as shown

in numguess.jsp . Between the <%and %>tags, you can write as many lines of

scripting language code as you want. In general, doing less processing in scriptlets

and more in components like servlets or Beans makes your application code more

reusable and portable. Nonetheless, how you write your JSP application is your

choice, and Tomcat specifies no limit on the length of a scriptlet.

Mingling Scripting Elements with Tags

When you mingle scripting elements with HTML and JSP tags, you must always end

a scripting element before you start using tags and then reopen the scripting element

afterwards, like this:

<% } else { %> <!-- closing the scriptlet before the tags start -->

... tags follow ...

<% } %> <!-- reopening the scriptlet to close the language block -->

At first, this may look a bit strange, but it ensures that the scripting elements are

transformed correctly when the JSP source file is compiled.

When Are the Scripting Elements Executed?

A JSP source file is processed in two stages—HTTP translation time and request
processing time.

At HTTP translation time, which occurs when a user first loads a JSP page, the JSP

source file is compiled to a Java class, usually a Java servlet. The HTML tags and as

many JSP tags as possible are processed at this stage, before the user makes a

request.

Request processing time occurs when your user clicks in the JSP page to make a

request. The request is sent from the client to the server by way of the request
object. The JSP container then executes the compiled JSP file, or servlet, using the

request values the user submitted.

When you use scripting elements in a JSP file, you should know when they are

evaluated. Declarations are processed at request processing time and are available to

other declarations, expressions, and scriptlets in the compiled JSP file. Expressions

are evaluated at request processing time. The value of each expression is converted

Using Scripting Elements 25

to a String and inserted in place in the compiled JSP file. Scriptlets also are

evaluated at request processing time, using the values of any declarations that are

made available to them.

How To Run the Example

Install the example as described in “Installing and Running the Example

Applications” on page 2. Then, open a Web browser and go to:

http://localhost:8080/examples/jsp/num/numguess.jsp

http://localhost:8080/examples/jsp/num/numguess.jsp

26 JavaServer Pages Tutorial

Handling Exceptions

What was happening the last time you used a JSP application and you entered

something incorrectly? If the application was well written, it probably threw an

exception and displayed an error page. Exceptions that occur while a JSP application

is running are called runtime exceptions.

Just as in a Java application, an exception is an object that is an instance of

java.lang.Throwable or one of its subclasses. Throwable has two standard

subclasses—java.lang.Exception, which describes exceptions, and

java.lang.Error , which describes errors.

Errors are different from exceptions. Errors usually indicate linkage or virtual ma-

chine problems that your Web application probably won’t recover from, such as run-

ning out of memory. Exceptions, however, are conditions that can be caught and

recovered from. These exceptions might be, for example, a NullPointerExcep-
tion or a ClassCastException , which tell you that a null value or a value of the

wrong data type has been passed to your application while it is running.

Runtime exceptions are easy to handle in a JSP application, because they are stored

one at a time in the implicit object named exception . You can use the exception
object in a special type of JSP page called an error page, where you display the

exception’s name and class, its stack trace, and an informative message for your

user.

A runtime exception is thrown by the compiled JSP file, the Java class file that

contains the translated version of your JSP page. This means that your application

has already been compiled and translated correctly. (Exceptions that occur while a

file is being compiled or translated are not stored in the exception object and have

their messages displayed in the command window, rather than in error pages. These

are not the type of exception described in this tutorial.)

This tutorial describes how to create a simple JSP application with several display

pages, a JavaBeans component, and one error page that gives informative error

messages to the user. In this example, the bean tracks which JSP page the user was

working in when the exception was thrown, which gives you, the developer,

valuable information so that you can display an informative message. This is a

simple error tracking mechanism; we will describe more complex ones later in this

book.

http://localhost:8080/examples/jsp/num/numguess.jsp

Handling Exceptions 27

How To Add Error Pages

Even though we call them error pages, the specialized JSP pages we describe here

actually display information about exceptions. To add error pages that display

exception information to a Web application, follow these steps:

1. Write your component so that it throws certain exceptions under certain

conditions.

2. In the JSP file, use a page directive with errorPage set to the name of a JSP file

that will display a message to the user when an exception occurs.

3. Write an error page file, using a page directive with isErrorPage="true" . In

the error page file, use the exception object to get information about the

exception.

4. Use a simple tracking mechanism in your component to help you gather

information about what your user was doing when the exception was thrown.

5. Use messages, either in your error page file or included from other files, to give

your user information relevant to what he or she was doing when the exception

was thrown.

An Email Address Finder Example

This example, named email , stores names and email addresses in a map file based

on the java.util.TreeMap class defined in the JDK 1.2. The TreeMap class creates

a data structure called a red-black tree. In the tree, data is stored with a key and a

value. In this example, the name is the key and the email address is the value.

When you add an entry to the map file, you enter both a name (the key) and an

email address (the value). You can look up or delete an email address by entering

just a name. The name cannot be null because it is a key. If a user tries to enter a null

name, the application throws an exception and displays an error page.

28 JavaServer Pages Tutorial

So What’s a Red-Black Tree?

For those of you who are curious about algorithms, a red-black tree is an extended
binary tree that looks something like this (conceptually, at least):

If you are viewing this document online, you will see that some nodes are red and

some are black. If you are viewing this document in print, the red nodes look a

shade or two lighter than the black.

The red-black tree has nodes that are either leaf nodes or branch nodes. Leaf nodes

are the small nodes at the end of a line, while branch nodes are the larger nodes that

connect two or more lines. Data is stored in a balanced structure in the tree, using

the following conditions:

■ Every node has two children or is a leaf.

■ Every node is colored red or black.

■ Every leaf node is colored black.

■ If a node is red, then both of its children are black.

■ Every path from the root to a leaf contains the same number of black nodes.

If you want more detail on how a tree map works, you can find it in Introduction to
Algorithms by Corman, Leiserson, and Rivest. The advantage of a tree map is that

you can create a map file that stores data in ascending order (sorted by keys) and

that has fast search times.

How the Example Is Structured

The email example has three pages with HTML forms, two response files, one error

page, and one JavaBeans component. You can visualize the file structure as

something like this:

Handling Exceptions 29

■ Map.java is a JavaBeans component that creates the map file.

■ email.jsp is a JSP page that displays a form where the user enters a name and

email address.

■ lookup.jsp is a JSP page that lets a user search for an email address that

matches a name.

■ lookupresponse.jsp is included in lookup.jsp and displays the entry the

user wants to look up.

■ delete.jsp is a JSP page that lets the user delete an email address that matches

a name.

■ deleteresponse.jsp is included in delete.jsp and displays the entry that

was deleted from the map file.

■ error.jsp is an error page that displays information about handling exceptions

that occur while adding, looking up, or deleting entries in the map file.

The code for email is shown in CODE EXAMPLE 1-9 through CODE EXAMPLE 1-15, along

with miniature versions of its screens. You may want to install and run the example

while you look at the code. The instructions are in “How To Run the Example” on

page 45.

CODE EXAMPLE 0-9 Adding a Name and Email Address (email.jsp)

<%@ include file="copyright.html" %>

<%@ page isThreadSafe="false" import="java.util.*, email.Map"
errorPage="error.jsp" %>

<jsp:useBean id="mymap" scope="session" class="email.Map" />
<jsp:setProperty name="mymap" property="name" param="name" />
<jsp:setProperty name="mymap" property="email" param="email" />

email.jsp

lookup.jsp

delete.jsp

error.jsp

lookupresponse.jsp

deleteresponse.jsp

Map.java

30 JavaServer Pages Tutorial

<% mymap.setAction("add"); %>

<html>
<head><title>Email Finder</title></head>
<body bgcolor="#ffffff" background="background.gif" link="#000099">

<!-- the form table -->

<form method="get">
<table border="0" cellspacing="0" cellpadding="5">

<tr>
<td width="120"> </td>
<td align="right">
<h1>Email Finder</h1> </td>
</tr>

<tr>
<td width="120" align="right">Name</td>
<td align="left"><input type="text" name="name" size="35"></td>
</tr>

<tr>
<td width="120" align="right">Email Address</td>
<td align="left"><input type="text" name="email" size="35"></td>
</tr>

<tr>
<td width="120"> </td>
<td align="right">
Please enter a name and an email address.
</td>
</tr>

<tr>
<td width="120"> </td>
<td align="right">
<input type="submit" value="Add">

Handling Exceptions 31

</td>
</tr>

<!-- here we call the put method to add the
name and email address to the map file -->

<%
String rname = request.getParameter("name");
String remail = request.getParameter("email");
if (rname != null) {

mymap.put(rname, remail);
}

%>

<tr>
<td width="120"> </td>
<td align="right">
The map file has <%= mymap.size() %>
 entries.
</td>
</tr>

<tr>
<td width="120"> </td>
<td align="right">
Lookup |

Delete
</td>
</tr>

</table>
</form>

</body>
</html>

CODE EXAMPLE 0-10 Looking Up a Name in the Map File (lookup.jsp)

<%@ include file="copyright.html" %>

<%@ page isThreadSafe="false" import="java.util.*, email.Map"
errorPage="error.jsp" %>

<jsp:useBean id="mymap" scope="session" class="email.Map" />
<jsp:setProperty name="mymap" property="name" param="name" />

<% mymap.setAction("lookup"); %>

<html>

32 JavaServer Pages Tutorial

<head><title> Email Finder </title></head>
<body bgcolor="#ffffff" background="background.gif" link="#000099">

<form method="get">
<table border="0" cellspacing="0" cellpadding="5">

<tr>
<td width="120"> </td>
<td align="right">
<h1>Email Finder</h1> </td>
</tr>

<tr>
<td width="120" align="right"> Name</td>
<td align="left">
<input type="text" name="name" size="35"></td> </tr>
<tr>
<td width="120"> </td>
<td align="right">
Please enter a name for which

you’d like an email address.
</td>
</tr>

<tr>
<td width="120"> </td>
<td align="right">
The map file has <%= mymap.size() %>
entries.
</td>
</tr>

<tr>
<td width="120"> </td>
<td align="right"> <input type="submit" value="Lookup"> </td>
</tr>

Handling Exceptions 33

<% if (request.getParameter("name") != null) { %>
<%@ include file="lookupresponse.jsp" %>

<% } %>

<tr>
<td width="120"> </td>
<td align="right">
Add |

Delete
</td>
</tr>

</table>
</form>

</body>
</html>

CODE EXAMPLE 0-11 Displaying the Lookup Response (lookupresponse.jsp)

<%@ page import="java.util.*, email.Map" %>

<tr>
<td width="120"> </td>
<td align="right">
 Success!
</td>
</tr>
<tr>
<td width="120"> </td>
<td align="right">
<jsp:getProperty name="mymap" property="name" />

<jsp:getProperty name="mymap" property="email" />
</td>
</tr>

34 JavaServer Pages Tutorial

CODE EXAMPLE 0-12 Deleting an Email Address (delete.jsp)

<%@ include file="copyright.html" %>

<%@ page isThreadSafe="false" import="java.util.*, email.Map"
errorPage="error.jsp" %>

<jsp:useBean id="mymap" scope="session" class="email.Map" />
<jsp:setProperty name="mymap" property="name" param="name" />

<!-- tags the JSP page so that we can display
the right exception message later -->

<% mymap.setAction("delete"); %>

<html>
<head><title> Email Finder </title></head>
<body bgcolor="#ffffff" background="background.gif" link="#000099">

<form method="get">
<table border="0" cellspacing="0" cellpadding="5">

<tr>
<td width="120"> </td>
<td align="right">
<h1>Email Finder</h1> </td>
</tr>
<tr>
<td width="120" align="right">Name</td>
<td align="left"> <input type="text" name="name" size="35"> </td>
</tr>

<tr>
<td width="120"> </td>
<td align="right">
Please enter a name you would like to delete.
</td>
</tr>

Handling Exceptions 35

<tr>
<td width="120"> </td>
<td align="right">
The map file has <%= mymap.size() %>
entries.
</td>
</tr>

<tr>
<td width="120"> </td>
<td align="right"> <input type="submit" value="Delete"> </td>
</tr>

<!-- display the name and email address, then
delete them from the map file -->

<% if (request.getParameter("name") != null) { %>
<%@ include file="deleteresponse.jsp" %>

<%
mymap.remove(request.getParameter("name")) ;

}
%>

<tr>
<td width="120"> </td>
<td align="right">
Add |

Lookup
</td>
</tr>

</table>
</form>

</body>
</html>

36 JavaServer Pages Tutorial

CODE EXAMPLE 0-13 Displaying the Delete Response (deleteresponse.jsp)

<%@ page import="java.util.*, email.Map" %>

<tr>
<td width="120">
</td>
<td align="right"> Success!
</td>
</tr>
<tr>
<td width="120"> </td>
<td align="right">
<jsp:getProperty name="mymap" property="name" />

<jsp:getProperty name="mymap" property="email" />

<p>
has been deleted from the map file.
</td>
</tr>

CODE EXAMPLE 0-14 Displaying Exception Messages (error.jsp)

<%@ include file="copyright.html" %>

<%@ page isErrorPage="true" import="java.util.*, email.Map" %>
<jsp:useBean id="mymap" scope="session" class="email.Map" />

<html>
<head><title>Email Finder</title></head>
<body bgcolor="#ffffff" background="background.gif" link="#000099">

<table border="0" cellspacing="0" cellpadding="5">
<tr>
<td width="150" align="right"> </td>
<td align="right" valign="bottom"> <h1> Email Finder </h1> </td>
</tr>

Handling Exceptions 37

<tr>
<td width="150" align="right"> </td>
<td align="right"> Oops! an exception occurred. </td>
</tr>

<tr>
<td width="150" align="right"> </td>
<td align="right"> The name of the exception is

<%= exception.toString() %>.
</td>
</tr>

<tr>
<td width="150" align="right"> </td>
<td align="right"> </td>
</tr>

<% if (mymap.getAction() == "delete") { %>
<tr>
<td width=150 align=right> </td>
<td align=right>
This means that ...
<p>The entry you were trying to
delete is not in the map file

<i>or</i>

you did not enter a name to delete.
<p>
Want to try again?
</td>
</tr>

<% }

else if (mymap.getAction() == "lookup") { %>
<tr>

38 JavaServer Pages Tutorial

<td width="150" align="right"> </td>
<td align="right">
<i>This means that ...</i>
<p>the entry you were trying to
look up
is not in the map file, <i>or</i>

you did not enter a name to look up.
<p>
Want to try again?
</td>
</tr>

<% }

else if (mymap.getAction() == "add") { %>
<tr>
<td width="150" align="right"> </td>
<td align="right">
<i>This means that ...</i>
<p>You were trying to add
an entry with a name of null.

The map file doesn’t allow this.
<p>
Want to try again?
</td>
</tr>

<% } %>

</table>

CODE EXAMPLE 0-15 Creating the Map File (Map.java)

package email;
import java.util.*;

public class Map extends TreeMap {

// In this treemap, name is the key and email is the value

private String name, email, action;
private int count = 0;

public Map() { }

public void setName(String formName) {
if (formName != "") {

Handling Exceptions 39

name = formName;
}

}

public String getName()
return name;

}

public void setEmail(String formEmail) {
if (formEmail != "") {

email = formEmail;
System.out.println(name);// for debugging only
System.out.println(email);// for debugging only

}
}

public String getEmail() {
email = get(name).toString();
return email;

}

public void setAction(String pageAction) {
action = pageAction;

}

public String getAction() {
return action;

}

}

Handling Exceptions in the Bean

In this example, the code that throws exceptions is in the TreeMap class, which our

email.Map bean extends, so we won’t need to write code that throws exceptions in

the bean.

The methods that we use from TreeMap are shown below, with their exceptions:

■ public Object get(Object key)
throws ClassCastException, NullPointerException
- retrieves an entry from the map file

■ public Object put(Object key, Object value)
throws ClassCastException, NullPointerException
- adds an entry to the map file

40 JavaServer Pages Tutorial

■ public Object remove(Object key)
throws ClassCastException, NullPointerException
- removes an entry from the map file

■ int size()
- returns the number of entries in the map file

Of course, if you need more information about these methods, you can find it in the

Javadoc API reference for java.util.TreeMap .

The TreeMap class throws a ClassCastException when the user tries to enter

data of the wrong type in the map file, for example, an int where the map file is

expecting a String . Keep in mind that the TreeMap class is also used with Java

client applications. In our JSP application, this exception won’t occur, because the

user enters a name and an email address in an HTML form, which always passes

data as strings to the bean. Even if the user typed 6 as a name, the value is still sent

as a String .

However, the get , put , and remove methods throw a NullPointerException if

the user enters nothing and a null value is passed to the bean. This is the most

common exception that the email application needs to handle. This exception might

occur while your user is trying to add, look up, or remove an entry from the map

file. Remember that the key (in this case, the name) cannot be null.

When the User Tries to Add a Null Value

The first case, where the user attempts to add a null name or email address, is

handled by some simple code in the bean and in email.jsp . (Here null means the

user has entered nothing in the form text box. It does not handle the case where the

user enters one or more blank spaces, then presses Return.)

The code that handles adding null values is in the setName and setEmail methods

of Map.java and in a scriptlet in email.jsp (CODE EXAMPLE 1-16):

CODE EXAMPLE 0-16 Catching a Null Value on Add

Map.java:

public void setName(String formName) {
if (formName != "") {

name = formName;
}

}

public void setEmail(String formEmail) {
if (formEmail != "") {

email = formEmail;
System.out.println(name); // for debugging only

Handling Exceptions 41

System.out.println(email); // for debugging only
}

}

email.jsp:

<%
String rname = request.getParameter("name");
String remail = request.getParameter("email");
if (rname != null) {

mymap.put(rname, remail);
}

%>

Both setName and setEmail check whether the user has entered a null value in the

form before setting their respective properties. If the form value is null, the bean

does not set a property, the put method does not add a value to the map file, and no

exception is thrown.

When the User Tries to Look Up a Null Value

But if you go to the Lookup or Delete page of the example and try to look up or delete

an entry that isn’t in the map file at all, the email application throws a

NullPointerException and displays the error page. The code that handles

looking up null values is shown in CODE EXAMPLE 1-17.

CODE EXAMPLE 0-17 Catching a Null Value on Look Up

lookup.jsp:

<% if (request.getParameter("name") != null) { %>
<%@ include file="lookupresponse.jsp" %>

<% } %>

lookupresponse.jsp:
<tr>
<td width="120"> </td>
<td align="right">

<jsp:getProperty name="mymap" property="name" />

<jsp:getProperty name="mymap" property="email" />

</td>
</tr>

This example has two pieces of code that work together. The page lookup.jsp ,

where you enter a name you want to look up in the map file, has a scriptlet that

checks whether or not the user has entered a name in the form. If the user doesn’t

42 JavaServer Pages Tutorial

enter a name, or enters a name that doesn’t exist in the map file, the bean throws a

NullPointerException and the application displays the error page—which is the

desired behavior! In this case, you can be happy that the error page is displayed.

You may have noticed that the lines from lookupresponse.jsp use the

<jsp:getProperty> tag to retrieve the name and email address from the bean.

You could also try to retrieve the email address using expressions, something like

this:

<%= request.getParameter("name") %>

<%= mymap.get(request.getParameter("name")) %>

If you use these lines, the application would behave a little differently. Rather than

throwing a NullPointerException and displaying an error page, it would

display the name the user entered, with the word null below it in the JSP page. In

Tomcat, the <jsp:getProperty> tag intentionally handles null values differently

than scriptlets or expressions. The way null values are handled will vary according

to the JSP container you use.

When the User Tries to Delete a Null Value

Handling the case of a user trying to delete a null value is very similar to handling

the lookup of a null value. The code that handles null values that occur while you

are trying to delete an entry is shown in CODE EXAMPLE 1-18.

CODE EXAMPLE 0-18 Catching a Null Value on Delete

delete.jsp:

<% if (request.getParameter("name") != null) { %>
<%@ include file="deleteresponse.jsp" %>

<%
mymap.remove(request.getParameter("name")) ;

}
%>

deleteresponse.jsp:

<tr>
<td width="120"> </td>
<td align="right">

<jsp:getProperty name="mymap" property="name" />

<jsp:getProperty name="mymap" property="email" />

Handling Exceptions 43

<p>
has been deleted from the map file.

</td>
</tr>

Calling an Error Page From Another Page

To link the display pages to the error page, each display page in the email application

uses a page directive with the errorPage attribute, like this:

<%@ page isThreadSafe="false" import="java.util.*, email.Map"
errorPage="error.jsp" %>

In the code examples, the files that use this directive are email.jsp , lookup.jsp ,

and delete.jsp . You can only specify one error page for each JSP page.

This means that you can design a JSP application so that each JSP page calls a

different error page, or so that several JSP pages call one error page. In the email

application, several JSP pages call one error page, as it simplifies the number of files

you need to maintain for one application. In designing your applications, the choice

is up to you.

You should always use at least one error page in a JSP application. If you don’t

specify an error page, the exception message and stack trace are displayed in the

command window from which the JSP container was started, while the Web browser

displays a non-informative HTTP error message, for example, a 404 or 501 message.

This is definitely not a graceful way to handle exceptions.

Writing an Error Page

An error page is different from an ordinary JSP page. In an error page, you must

explicitly set the isErrorPage attribute of the page directive to true . You also

have access to the exception object, which gives you information about the

exception.

First, let’s look at an example of the page directive for an error page:

<%@ page isErrorPage="true" import="java.util.*, email.Map" %>

Once you have set isErrorPage to true , you can use the exception object.

exception is of type java.lang.Throwable , so you can use any of the methods

defined in Throwable with exception in a scriptlet or expression, for example:

■ <%= exception.toString() %>

■ <% exception.printStackTrace(); %>

44 JavaServer Pages Tutorial

The expression exception.toString() displays the exception’s class name, for

example, java.lang.NullPointerException , while

exception.printStackTrace() displays the exception’s stack trace. The class

name and stack trace are probably very helpful to you the developer, but probably

not very helpful to your user. To get around this, you may want to write some type

of tracking mechanism to provide information that helps you give an informative

message to your user.

Writing a Simple Tracking Mechanism

The email example uses a property named action in Map.java to track which page

the user was working in when the exception was thrown. That gives you valuable

information to help you write an informative error message for your user. The bean

has a variable named action , a getAction method, and a setAction method.

The variable and method declarations in the bean look like this:

private String action ;

public void setAction (String pageAction) {
action = pageAction;

}

public String getAction() {
return action;

}

Each of the pages email.jsp , lookup.jsp , and delete.jsp sets the value of

action with a line like this one (which comes from email.jsp):

<% mymap.setAction("add"); %>

If an exception occurs, error.jsp checks the value of action and includes an

appropriate message for each value, using lines like these:

<% if (mymap.getAction() == "delete") { %>
.. text message here ..
else if (mymap.getAction() == "lookup") { %>
.. text message here ..
else if (mymap.getAction() == "add") { %>
.. text message here ..
<% } %>

Of course, this is a very simple way to implement tracking. If you move into

developing J2EE applications, you can write applications that save state.

http://java.sun.com/j2ee

Handling Exceptions 45

How To Run the Example

Install the example as described in “Installing and Running the Example

Applications” on page 2. Then, open a Web browser and go to:

■ http://localhost:8080/email/email.jsp

http://localhost:8080/email/email.jsp

	Installing and Running the Example Applications
	A First JSP Application
	Handling HTML Forms
	Using Scripting Elements
	Handling Exceptions

