<>

Boundary Mapping and Boundary State Routing (BSR) in

Ad Hoc Networks
ABSTRACT

In this project a geographic routing protocol, Boundary State Routing (BSR), this consists of two components. The first is an improved forwarding strategy, Greedy-Bounded Com pass, which can forward packets around concave boundaries, where the packet moves away from the destination without looping. The second component is a Boundary Mapping Protocol (BMP), which is used to maintain link state information for boundaries containing concave vertices. The proposed forwarding strategy Greedy- Bounded Compass is shown to produce a higher rate of path completion than Greedy forwarding and significantly improves the performance of Greedy Perimeter State Routing (GPSR) in sparse networks when used in place of Greedy forwarding. The proposed geographic routing protocol BSR is shown to produce significant improvements in performance in comparison to GPSR in sparse networks due to informed decisions regarding the direction of boundary traversal at local minima.

1. OBJECTIVE OF THE PROJECT :
1.1. EXISTING SYSTEM

1. Global routing strategies such as distance vector and link state are suitable for smaller networks with low mobility but do not scale well in larger dynamic environments due to the periodic and global dissemination of topology updates

2. The on-demand routing protocols use a query response mechanism to discover and maintain routes for individual sessions. This addresses the control overhead of distance vector and link state strategies. However, flooding of route queries limits the performance under conditions of high mobility and high traffic loads

3. The hybrid approaches use a cluster or hierarchical network structure to dynamically group nodes and then apply different routing strategies within and between groups. This addresses scalability in static networks or situations involving group mobility but incurs an excessive maintenance overhead for cluster head election, cluster membership, and hierarchical addressing under conditions of random mobility.

1.2. PROPOSED SYSTEM :
1. Geographic routing protocols offer a number of advantages over conventional ad hoc routing strategies. Geographic forwarding does not require maintenance of routing tables or route construction prior to or during the forwarding process. The forwarding process also allows a packet to adapt to changes in the topology by selecting the next best choice if an intermediate node used by previous packets becomes unavailable. Without the need for route construction, these approaches do not require table maintenance other than immediate neighbors nor dissemination of topology information.

2. The ability to weight individual next-hop choices according to additional metrics. Routes can be altered node by node and packet by packet simply by considering additional Quality-of-Service (QoS) parameters relating to the next-hop neighbors, such as delay or available bandwidth. Geographic forwarding in this basic form offers a near-stateless, low-overhead, and low-latency solution to routing in ad hoc networks.

2. INTRODUCTION :
Geo graphic routing protocols use a basic geographic forwarding strategy to forward packets node by node toward the location of the destination. This approach to routing has the advantage of eliminating the need for nodes to maintain conventional routing information. The disadvantage of geographic forwarding is that a secondary routing strategy is required to route packets around local minima, which occur when the basic forwarding strategy fails at a node where there are no neighbors that are closer to the destination. In this paper, we propose a geographic routing protocol called Boundary State Routing (BSR). BSR uses an improved forwarding strategy called Greedy Bounded Compass forwarding to route packets around convex boundaries and uses boundary-state information from a proposed Boundary Mapping Protocol (BMP) to route packets around concave boundaries.

2.1. CONCEPTS :
Since the inception of wireless networking there have been two types of wireless networks: the infrastructure network, including some local area networks (LANs), and the ad hoc network. Ad hoc is Latin meaning "for this purpose." Ad hoc networks therefore refer to networks created for a particular purpose. They are often created on-the-fly and for one-time or temporary use. Often, ad hoc networks are comprised of a group of workstations or other wireless devices which communicate directly with each other to exchange information. Think of these connections as spontaneous networks, available to whom ever is in a given area.

An ad hoc network is one where there are no access points passing information between participants. Infrastructure networks pass information through a central information hub which can be a hardware device or software on a computer. Office networks, for example, generally use a server to which company workstations connect to receive their information. Ad hoc networks, on the other hand, do not go through a central information hub.

Ad hoc networks are generally closed in that they do not connect to the Internet and are typically created between participants. But, if one of the participants has a connection to a public or private network, this connection can be shared among other members of the ad hoc network. This will allow other users on the spontaneous ad hoc network to connect to the Internet as well.
An ad hoc network is “a transitory association of mobile nodes which do not depend upon any fixed support infrastructure. [...] Connection and disconnection is controlled by the distance among nodes and by willingness to collaborate in the formation of cohesive, albeit transitory community.” [Murphy et al]. But what are ad hoc applications? One could simply answer 'pieces of software that will run on ad hoc networks'. We believe that defining a class of applications (ad hoc applications) by coupling it to only one possible implementation technology (ad hoc networks) reduces the generality and effectiveness of the definition. Therefore we define an ad hoc application as a self-organizing application composed of mobile and autonomous devices interacting as peers, whose relationships are made possible because of relatively close physical distances (collocation). In addition, this dynamic community, defined by geographical proximity, needs to have a common (application-level) interest. More formally, three features must be present in an application for it to deserve the ad hoc label:

· Mobility: in order to be able to use the application everywhere, the user should not be limited by range. The range limit is set by the business logic of the application.

· Peer-to-Peer: direct communication between peers is mandatory. This means that the client/server relationship is defined in an ad hoc manner by the application logic (direct interaction between the pieces of software).

· Collocation: all logical interactions between applications must result in a physical interaction between users. This means that in order to be called an ad hoc application, the service has to be location-based.

The above definition allows us to abstract the network completely, and focus on the application aspects. In this way, there is a clear decoupling between the application and the network, and any type of network — GSM, WLAN or ad hoc — can be used. This decoupling is fundamental in understanding the key issues underlying ad hoc applications and in providing reusable solutions to solve these issues. This eases the development of ad hoc applications. By abstracting the network level, we are able to build ad hoc applications in the absence of any ad hoc network, as long as the underlying infrastructure can provide support for the three basic aspects described above.

Ad hoc networks are common for portable video game systems like the Sony PSP or the Nintendo DS because they allow players to link to each other to play video games wirelessly. Some retail stores even create networks within them to allow customers to obtain new game demos via the store's own ad hoc network.

An ad hoc network can be thought of as a peer-to-peer network for the wireless age. Peer-to-peer or workgroup style networks were used to create a network environment for early Windows computers. This allowed these early computers to connect to each other to exchange information, usually in a smaller office environment without the need for domains and the additional management and overhead that comes with them.

The possibilities with ad hoc networks are quite endless. With connection sharing and other methods to access public or private wired or wireless networks, the reach of an ad hoc network can extend quite far.

An ad-hoc network can be classified into two main types: mobile ad-hoc network and mobile ad-hoc sensors network. Unlike typical sensor networks, which communicate directly with the centralized controller, a mobile ad-hoc sensor network follows a broader sequence of operational scenarios, thus demanding a less complex setup procedure. A mobile ad-hoc sensor or hybrid ad-hoc network consists of a number of sensor spreads in a geographical area. Each sensor is capable of mobile communication and has some level of intelligence to process signals and to transmit data. In order to support routed communications between two mobile nodes, the routing protocol determines the node connectivity and routes packets accordingly. This makes a mobile ad-hoc sensor network highly adaptable so that it can be deployed in almost all environments.

Mobile ad-hoc sensor networks are very beneficial in different scenarios. These networks advance operational efficiency of certain civilian applications. For example, in a military operation, it can be used to gather information about enemy location, movement, etc. As a mobile traffic sensor networks, it can be used to monitor vehicle traffic on motorways, and as a mobile surveillance sensor network, it can be used for providing security in various places such as shopping malls, hotels, and in other similar facilities. Mobile ad-hoc sensor networks can also be use to locate free and occupied spots in a parking area and to monitor environmental changes in places like forests, oceans, etc.

The mobile ad-hoc sensor network is a new invention with long-term potential for transforming our daily lives. In mobile ad-hoc sensor networks, each host may be equipped with a variety of sensors that can be organized to detect different local events. Moreover, an ad-hoc sensor network offers low setup and administration costs. We can expect to see their deployment on a wide scale in the near future.

2.2. LITURATUE SURVEY :
Conventional ad hoc routing strategies include global, on demand, and hybrid approaches. Global routing strategies such as distance vector by C.E. Perkins et.al and link state by M. Gerla et.al are suitable for smaller networks with low mobility but do not scale well in larger dynamic environments due to the periodic and global dissemination of topology updates.
The on-demand routing protocols proposed by D.B. Johnson et.al, use a query response mechanism to discover and maintain routes for individual sessions. This addresses the control overhead of distance vector and link state strategies.
However, flooding of route queries limits the performance under conditions of high mobility and high traffic loads. The hybrid approaches by Z.J. Hass et.al, use a cluster or hierarchical network structure to dynamically group nodes and then apply different routing strategies within and between groups. This addresses scalability in static networks or situations involving group mobility but incurs an excessive maintenance overhead for cluster head election, cluster membership, and hierarchical addressing under conditions of random mobility.
The conventional ad hoc routing strategies outlined above approach the network as a logical graph abstracted from the physical network topology. In contrast, location-aware networks use the physical location of nodes obtained from a location determination mechanism such as GPS to provide physical topology information for routing by T. Imielinski et.al.

This information is then maintained within a centralized or distributed location database. Geographic routing protocols use this location information to progressively forward packets through the physical space toward the destination location, with intermediate next-hop routing decisions based on selecting the neighbor that has the closest distance, compass setting, or some other measure of forward progress toward the destination researched by G. Finn et.al.
This process is termed geographic forwarding. Note that we will use the term geographic forwarding for strategies that use location information to forward packets node by node toward the destination (and therefore only provide a partial routing solution due to failure at local minima where no neighboring nodes exist which are closer to the destination). We use the term geographic routing for strategies that use geographic location information but also incorporate a backup routing strategy on geographic forwarding failure at local minima to provide 100 percent of path completion (in static networks).
As per I. Stojmenovic et.al, Routes can be altered node by node and packet by packet simply by considering additional Quality-of-Service (QoS) parameters relating to the next-hop neighbors, such as delay or available bandwidth.
Geographic forwarding in this basic form offers a near-stateless, low-overhead, and low-latency solution to routing in ad hoc networks. The complexity and overhead required for a distributed location database service is a disadvantage of geographic routing (although approaches such as proposed by M. Grossglauser et.al, attempt to minimize this overhead). However, if location-aware nodes and location-centric data become an integral part of pervasive computing and mobile sensor networks used for control and monitoring of applications, then the overhead of the location service cannot be entirely apportioned as the routing overhead.
Geographic routing protocols typically consist of a primary forwarding strategy and a secondary recovery strategy, which is used when the primary forwarding fails. Current strategies proposed to address the problem of routing through local minima include restricted flooding proposed by I. Stojmenovic and X. Lin, backtracking proposed by H. Takagi and L. Kleinrock, planar graph conversion using face traversal based on S. Datta et.al, depth-first search proposed by R. Jain et.al, and hybrid approaches that incorporate conventional ad hoc routing strategies by L. Blazevic et.al.
The following section provides an overview of the development of geographic routing strategies as a framework in which to introduce our research.
The Random Progress Method proposed by R. Nelson and L. Kleinrock forwards packets to a random neighbor from among those that are closer to the destination. The random selection of the next hop was suggested to provide an even distribution of traffic load.
As per H. Takagi and L. Kleinrock the most Forward with Fixed Radius R (MFR) forwards packets to the neighbor within a set radius of the current node that makes the most forward progress (or the least backward progress) along the line drawn from the current node to the destination. Progress is calculated as the cosine of the distance from the current node to the neighbor projected back onto the line from the current node to the destination. Although typically reviewed as MFR, the authors suggest that it be implemented as Most Forward within N (MFN), which selects the next hop from the closest of N nodes, where the optimal value of N was found to be 7. The authors also introduce backtracking as a recovery strategy when packets reach the local minima and cannot move forward. Backtracking has the disadvantage that it may introduce loops and does not guarantee delivery of packets.
Based on T.C. Hou and V.O.K. Li, the nearest with Forward Progress (NFP) strategy forwards a packet to the closest neighbor in the forward direction. The current node then modifies it’s transmit power to suit the connection. This results in higher delivery rates due to reduced interference and contention at the cost of increased hop count. Finn proposed the use of Greedy forwarding, which selects the next hop as the node closest to the destination.
The difference between Greedy forwarding and most forward progress, as used in MFR, is illustrated in Fig. 1. The Greedy approach, unlike MFR, allows a packet to move to a node that is beyond the destination if that node is closer to the destination than the previous node. Flooding within a limited radius of N nodes is proposed as a recovery procedure at the local minima when Greedy forwarding fails. This is more effective than the use of backtracking in MFR, which may produce looping. However, flooding within a limited radius increases the bandwidth overhead and, like backtracking, does not guarantee delivery.
For a 10-year period following Finn, research into geographic routing appeared to make limited progress until Navas and Imielinsky, influenced by Finn, applied the concept of geographic routing to the Internet and proposed RFC2009. The proposal relates to geographic addressing and routing in a large-scale cellular infrastructure.
They identified the need for accessing location-dependent data on the Internet and proposed the integration of a geographic addressing scheme and related protocols into the Internet Protocol (IP). They further proposed a geographic messaging scheme where packets could be unicast or multicast into a geographic area defined by a circle or polygon.

Location-Aided Routing (LAR) and Distance Routing Effect Algorithm for Mobility (DREAM) focus on ad hoc networking environments, as opposed to the larger scale focus of Navas and Imielinsky.
LAR is an on-demand routing protocol that uses the last known position of the destination node and its velocity to limit the flooding of route requests toward the destination. Flooding is limited to an area between the source and a circle, calculated around the destination, with its center at the last known position and a radius, which is determined by the node’s velocity. This improves the efficiency of the underlying on-demand protocol but still suffers the problem of scalability and latency associated with on-demand strategies. DREAM is based on the flooding of data without the prior establishment of a route. Messages are flooded into an area that is limited in a similar manner to that used in LAR. However, the use of directional flooding of data packets, as opposed to flooding of route requests in LAR, may still incur a significant bandwidth overhead.

With Compass Routing (DIR), Kranakis et al. proposed a variation on packet forwarding based on the direction for routing decisions, as shown in Fig. 1. In this strategy, packets are forwarded to the neighbor on the closest compass setting to the destination. DIR has the disadvantage that it is susceptible to looping and does not guarantee a delivery. To guarantee a delivery, face traversal of disjoint regions was proposed, where a packet is forwarded around one side of each face until the packet reaches the further edge of the face that intersects the line from the source to the destination. From this point, the packet traverses the next face in a similar manner until the destination is reached.

[image: image1.emf]
Fig. 1. Greedy forwarding, compass forwarding, and most forward progress.

Geographic Distance Routing (GEDIR) adopts the Greedy strategy proposed by Finn, where packets are forwarded to the neighbor closest to the destination. To allow a packet to move through the local minima, GEDIR does not include the current node in the distance calculation and permits a packet to be sent in the reverse direction if no forward node is available. To prevent looping, the packet is not permitted to be passed from the neighbor back to the previous node. This addresses single-hop looping, but a packet may loop back via an alternate path. Two variations of GEDIR were proposed to address the problem. These include flooding at the local minima (f-GEDIR) and maintaining 2-hop neighbor information to predict and avoid the local minima (2-hop GEDIR). f-GEDIR was found to be effective at the expense of an increased control overhead, whereas 2-hop GEDIR was an improvement but still allows loops of 2 þ hops. A multipath version c-GEDIR is also proposed to add reliability.
Bose et al. implemented and tested the concept of face traversal. The FACE-2 algorithm extracts a connected planar subgraph by converting the network topology to a Gabriel graph. FACE-2 has the advantage that it guarantees delivery in a connected static graph, although it does not provide the optimal path and also requires a unit graph with equal transmission radii for planar graph conversion.
Greedy Forward Greedy (GFG) was proposed, which incorporates both GEDIR (Greedy forwarding) for routing and FACE-2 (planar graph traversal) to recover when Greedy forwarding encounters the local minima.
Depth-First Search with Dominant Sets uses Greedy forwarding. When route failure occurs, the packet backtracks to the previous node, which forwards the packet to the next closest neighbor to the destination. To reduce the number of nodes involved in routing and thus reduce the number of hops involved in route determination, routing is restricted to the dominant set until the destination is known to the current node. It is further proposed that the availability of a path may be determined according to alternate metrics representing QoS requirements, such as bandwidth and power availability.

GPSR proposed by B. Karp and H.T. Kung which is a packet-switched routing protocol implementation of GFG using Greedy forwarding and planar graph traversal. Nodes are only required to maintain 1-hop neighbor location information that is exchanged using periodic beacons. Packets are first transmitted with a mode flag set to Greedy. When the local minima is reached, the flag is changed to the perimeter mode, and a face traversal algorithm is used until Greedy forwarding can be resumed.

Packets are not permitted to traverse an edge previously traversed to ensure that the packet does not loop.
With the GFG-sooner-back (GFG-s) algorithm, Datta et al. proposed improvements to reduce the hop counts in GFG. First, FACE-2 is modified by introducing 2-hop neighbor information to determine if there is a closer node to the destination, which will allow the packet to exit the FACE mode earlier than in the previous FACE-2. Second, GFG-s was proposed to use a shortcut procedure involving 2-hop neighbor information to check for a shorter path than that provided by the immediate neighbor. The number of hops is further reduced by using the dominant set to minimize the nodes involved in route determination.
The Geographic Routing Algorithm (GRA) initially uses a Greedy forwarding strategy to forward packets to the neighbor closest to the destination. When local minima are reached, a depth-first search route discovery process is initiated to find a path to the destination. Nodes cache the routing information and progressively build up routing tables from the discovery procedures. These tables are then used in place of geographic forwarding when the cached route information is available.
L. Blazevic, et.al implemented Terminode Routing focuses on large-scale networks and uses a hybrid approach to routing. Terminode Local Routing (TLR) maintains distance vector routing tables within a set radius of a node. Terminode Remote Routing (TRR) uses a set of anchor points or waypoints to route packets through the network. Anchors are established through a discovery procedure in conjunction with cached anchors from “friend” nodes that are considered reliable.
After the anchor points for a destination have been discovered, the list of anchor point vectors is inserted into the packet header, and the packet is forwarded progressively though the list by using geographic forwarding. When a node is reached, which has a distance vector entry for the destination, the local information is used to complete the route.
The Scalable Location-Update-Based Routing Protocol (SLURP) proposed by S. Singh, which incorporates location management, which divides a geographical area into rectangular regions called home regions. Each node in the network maintains a location table that maps the node ID to the corresponding home area ID for all other nodes in the network. Home region locations are obtained by querying the home region or by asking surrounding nodes in a large network if they have the location. For routing, SLURP forwards packets to the center of a home region by using MFR without backward progression. When a node is encountered, which is within the destination home region, SLURP checks for a cached route. If no route exists, then SLURP uses source routing similar to DSR to discover a route to the destination.
F. Kuhn et.al, suggested an Adaptive Face Routing (AFR) which is based upon the face traversal of a planar graph. To optimize routing, AFR incorporates FACE and Bounded Face Routing (BFR), which places a bound on the face traversal defined by an ellipse with the foci at the source and destination. The size of the bound is initially estimated, and then, if BFR fails and the packet returns to the source, the bound is doubled and the BFR process is repeated.
M. Heissenbu¨ ttel and T. Braun proposed Beacon Less Routing (BLR) which does not assume that nodes have information regarding neighboring nodes and eliminates beaconing, which is typically used to maintain adjacency tables in other geographic routing protocols. In the basic routing mode, a node broadcasts a packet with its location and the destination location. Only nodes that determine that they are within a 60-degree sector from the previous node to the destination consider forwarding the packet. Each of these nodes delays transmission, depending on the progress that the node makes toward the destination. When the closest node transmits after the minimum delay, the other candidates detect the transmission, are there by informed that the packet has been forwarded successfully, and drop the packet. A range of alternative approaches is also presented to deal with the basic-mode failure.
Exponential Age SEarch (EASE) and Greedy EASE (GREASE) proposed by M. Grossglauser and M. Vetterli which use node mobility to disseminate node location information based on the time and location of the last encounter with each of the other nodes in the network.
EASE uses Last Encounter Routing (LER), in which surrounding nodes are searched in an increasing radius until a node is found, whose last encounter with the destination is less than or equal to half the time of the current node’s last encounter with the destination. This node’s location is then used as a waypoint for routing (although no specific routing strategy is specified). In GREASE, if a node is encountered with a more recent estimate of the destination location than the waypoint, then that location becomes the new waypoint.
2.3. ALGORITHM & EXPLANATION :
Our proposed routing strategy BSR relies upon an improved forwarding strategy called Greedy-Bounded Compass forwarding. Unlike Greedy forwarding, the improved forwarding strategy can forward packets around a convex boundary without looping, even when the packet moves away from the destination. This is an essential component of BSR, as local minima will only occur on boundaries containing one or more concave nodes, and therefore, boundary probing, which is required to map these boundaries, only needs to be initiated from these concave nodes.

Compass Forwarding

Compass forwarding selects the neighbor on the closest angle to the destination. Because Compass forwarding is not limited to traversal in the forward direction, it has the advantage that it can, in certain circumstances, successfully progress around a convex boundary where the path moves away from the destination. This can result in a higher rate of path completion but has the disadvantage that it makes Compass forwarding susceptible to routing loops. The ability of Compass forwarding to progress around a convex boundary is illustrated in Fig. 2a. A packet originating from the source at A using Compass forwarding will traverse to B as the node on the closest compass setting to the destination. With Greedy forwarding, the packet would have been dropped at B, as no nodes are closer to the destination. With Compass forwarding, the packet will be forwarded to C at 85 degrees to the destination. From C (using the rule that a packet cannot be forwarded to the previous node to prevent looping), the packet is forwarded to D. From D, it traverses to E, to F, and then to the destination.
Routing Loops with Compass Forwarding :
Fig. 2b illustrates how Compass forwarding can result in a routing loop. In this example, the packet will traverse from the source at A to B as the node on the closest compass setting to the destination.
[image: image2.emf]
Fig. 2. Compass forwarding. (a) Without looping. (b) With looping.

The packet will then be forwarded to C at 85 degrees to the destination. At C, B is on the closest compass setting to the destination, but the packet is not permitted to traverse to the previous node. Excluding B, D is on the closest compass setting to the destination at 85 degrees and is selected over E at 100 degrees. At D, B is on the closest compass setting to the destination at 50 degrees. From B, the packet will loop around the path from B, C, and D until the Time to Live (TTL field in the IP packet header) is decremented to zero and the packet is dropped.
Bounded Compass Forwarding :
The previous example illustrates that preventing a packet from traversing to the previous node is not sufficient to prevent looping. Limiting the selection of the next hop to nodes that are closer to the destination would solve the problem, but this would remove the ability of Compass forwarding to move away from the destination and progress around a convex boundary.
The proposed forwarding strategy Bounded Compass forwarding addresses the looping problem in Compass forwarding by maintaining a record of the cumulative angle traversed _t from the closest ever location that the packet has come to the destination and places an upper bound on the angle traversed from this point. The angle traversed is initially set to the angle that the next hop deviates from the line between that node and the destination. At each following node, the angle change between the previous hop and the next hop is added to the angle traversed. If the packet traverses to a node that is closer than the closest ever location, the angle traversed is reset and the closest ever location in the packet header is set to the new node location.
When selecting the next hop, potential next-hop candidates are excluded if the angle traversed would reach or exceed _90 degrees. The only exception is the first hop from the closest ever location, which has no restriction.
Greedy-Bounded Compass Forwarding :
In the proposed forwarding strategy, Greedy-Bounded Compass forwarding, Greedy forwarding is used as the primary forwarding strategy and Bounded Compass forwarding is used as the fallback strategy on Greedy failure.
In Greedy-Bounded Compass forwarding, a packet initially attempts to traverse from the source by using Greedy forwarding. On Greedy failure, the location is recorded as the closest ever\ location, and the packet switches to Bounded Compass mode. When in the Bounded Compass mode, the packet can only revert to the Greedy mode if a next-hop location is available, which is closer to the destination than the closest ever location.
[image: image3.emf]
Fig. 3. Greedy-Bounded Compass forwarding showing mode changes at B and G.

This is illustrated in Fig. 3, where the packet traverses from the source at A to B in the Greedy mode. Then, on Greedy failure at B, the location of B is recorded as the closest ever location. The packet will then traverse B, C, D, E, F, and G in the BoundedCompass mode since no node is available, which is closer to the destination than the closest ever location (the location of node B). Then, at G, the next hop H is closer than the closest ever location, and so, the packet will revert to the Greedy mode and traverse from G to H. At H, the destination is listed as a directly connected neighbor, and the packet is forwarded to the destination.

Forwarding Algorithms :
The pseudo code representing the Greedy-Bounded Compass forwarding algorithm is presented in Table 1. Route Query is evaluated once for each packet at each node and controls the mode.

[image: image4.emf]
TABLE 1, Greedy-Bounded Compass Forwarding Algorithm

2.4. TECHNOLOGIES :
JAVA

Java technology is both a programming language and a platform.

The Java Programming Language

The Java programming language, developed at Sun Microsystems under the guidance of Net luminaries James Gosling and Bill Joy, is designed to be a machine-independent programming language that is both safe enough to traverse networks and powerful enough to replace native executable code. The Java programming language is a high-level language that can be characterized by all of the following buzzwords:

	 Simple
	 Architecture neutral

	 Object oriented
	 Portable

	 Distributed
	 High performance

	 Interpreted
	 Multithreaded

	 Robust
	 Dynamic

	 Secure
	

With most programming languages, you either compile or interpret a program so that you can run it on your computer. The Java programming Language is unusual in that a program is both compiled and interpreted. With the compiler, first you translate a program into an intermediate language called Java byte codes —the platform-independent codes interpreted by the interpreter on the Java platform. The interpreter parses and runs each Java byte code instruction on the computer. Compilation happens just once; interpretation occurs each time the program is executed. The following figure illustrates how this works. [image: image5.png]myProgran. java

nyProgran.class

Compiler

We can think of Java bytecode as the machine code instructions for the Java Virtual Machine (Java VM). Every Java interpreter, whether it's a development tool or a Web browser that can run applets, is an implementation of the Java VM.

Java bytecode help make "write once, run anywhere" possible. We can compile your program into bytecode on any platform that has a Java compiler. The bytecode can then be run on any implementation of the Java VM. That means that as long as a computer has a Java VM, the same program written in the Java programming language can run on Windows 2000, a Solaris workstation, or an iMac.

[image: image6.png]oy afrodram

HelloHorldepp . java

The Java Platform :
A platform is the hardware or software environment in which a program runs. We've already mentioned some of the most popular platforms like Windows 2000, Linux, Solaris, and MacOS. Most platforms can be described as a combination of the operating system and hardware. The Java platform differs from most other platforms in that it's a software-only platform that runs on top of other hardware-based platforms.

The Java platform has two components:

· The Java Virtual Machine (Java VM)

· The Java Application Programming Interface (Java API)

A Virtual Machine :
Java is both a compiled and an interpreted language. Java source code is turned into simple binary instructions, much like ordinary microprocessor machine code. However, whereas C or C++ source is refined to native instructions for a particular model of processor, Java source is compiled into a universal format—instructions for a virtual machine.

Compiled Java byte-code, also called J-code, is executed by a Java runtime interpreter. The runtime system performs all the normal activities of a real processor, but it does so in a safe, virtual environment. It executes the stack-based instruction set and manages a storage heap. It creates and manipulates primitive datatypes, and loads and invokes newly referenced blocks of code. Most importantly, it does all this in accordance with a strictly defined open specification that can be implemented by anyone who wants to produce a Java-compliant virtual machine. Together, the virtual machine and language definition provide a complete specification. There are no features of Java left undefined or implementation-dependent. For example, Java specifies the sizes of all its primitive data types, rather than leave it up to each implementation.

The Java interpreter is relatively lightweight and small; it can be implemented in whatever form is desirable for a particular platform. On most systems, the interpreter is written in a fast, natively compiled language like C or C++. The interpreter can be run as a separate application, or it can be embedded in another piece of software, such as a web browser.

All of this means that Java code is implicitly portable. The same Java application byte-code can run on any platform that provides a Java runtime environment, as shown in Figure 1.1. You don't have to produce alternative versions of your application for different platforms, and you don't have to distribute source code to end users.

[image: image7.png]Figure 1.1. The Java runtime environment

The JAVA Runtime environment

The fundamental unit of Java code is the class. As in other object-oriented languages, classes are application components that hold executable code and data. Compiled Java classes are distributed in a universal binary format that contains Java byte-code and other class information. Classes can be maintained discretely and stored in files or archives on a local system or on a network server. Classes are located and loaded dynamically at runtime, as they are needed by an application.

The Java API is a large collection of ready-made software components that provide many useful capabilities, such as graphical user interface (GUI) widgets. The Java API is grouped into libraries of related classes and interfaces; these libraries are known as packages. The next section, What Can Java Technology Do?, highlights what functionality some of the packages in the Java

API provides. The following figure depicts a program that's running on the Java platform. As the figure shows, the Java API and the virtual machine insulate the program from the hardware.

 [image: image8.png]yProgran.java

Tava APl
Sstraane || b o i
Hardware-Based Plaiom)

Native code is code that after you compile it, the compiled code runs on a specific hardware platform. As a platform-independent environment, the Java platform can be a bit slower than native code. However, smart compilers, well-tuned interpreters, and just-in-time byte code compilers can bring performance close to that of native code without threatening portability.

What Can Java Technology Do?

The most common types of programs written in the Java programming language are applets and applications. If you've surfed the Web, you're probably already familiar with applets. An applet is a program that adheres to certain conventions that allow it to run within a Java-enabled browser.

However, the Java programming language is not just for writing cute, entertaining applets for the Web. The general-purpose, high-level Java programming language is also a powerful software platform. Using the generous API, you can write many types of programs.

An application is a standalone program that runs directly on the Java platform. A special kind of application known as a server serves and supports clients on a network. Examples of servers are Web servers, proxy servers, mail servers, and Print servers. Another specialized program is a servlet. A servlet can almost be thought of as an applet that runs on the server side. Java Servlets are a popular choice for building interactive web applications, replacing the use of CGI scripts. Servlets are similar to applets in that they are runtime extensions of applications. Instead of working in browsers, though, servlets run within Java Web servers, configuring or tailoring the server.

How does the API support all these kinds of programs? It does so with packages of software components that provides a wide range of functionality. Every full implementation of the Java platform gives you the following features:

· The essentials: Objects, strings, threads, numbers, input and output, data structures, system properties, date and time, and so on.

· Applets: The set of conventions used by applets.

· Networking: URLs, TCP (Transmission Control Protocol), UDP (User Data gram Protocol) sockets, and IP (Internet Protocol) addresses.

· Internationalization: Help for writing programs that can be localized for users worldwide. Programs can automatically adapt to specific locales and be displayed in the appropriate language.

· Security: Both low level and high level, including electronic signatures, public and private key management, access control, and certificates.

· Software components: Known as JavaBeansTM, can plug into existing component architectures.

· Object serialization: Allows lightweight persistence and communication via Remote Method Invocation (RMI).

· Java Database Connectivity (JDBCTM): Provides uniform access to a wide range of relational databases.

The Java platform also has APIs for 2D and 3D graphics, accessibility, servers, collaboration, telephony, speech, animation, and more. The following figure depicts what is included in the Java 2 SDK.

[image: image9.png]Java
Language

Development.
Tools & APls

Java™ 2 Platform Standard E

Java Language

How Will Java Technology Change My Life?

We can't promise you fame, fortune, or even a job if you learn the Java programming language. Still, it is likely to make your programs better and requires less effort than other languages. We believe that Java technology will help you do the following:

· Get started quickly: Although the Java programming language is a powerful object-oriented language, it's easy to learn, especially for programmers already familiar with C or C++.

· Write less code: Comparisons of program metrics (class counts, method counts, and so on) suggest that a program written in the

Java programming language can be four times smaller than the same program in C++.

· Write better code: The Java programming language encourages good coding practices, and its garbage collection helps you avoid memory leaks. Its object orientation, its JavaBeans component architecture, and its wide-ranging, easily extendible API let you reuse other people's tested code and introduce fewer bugs.

· Develop programs more quickly: Your development time may be as much as twice as fast versus writing the same program in C++. Why? You write fewer lines of code and it is a simpler programming language than C++.

· Avoid platform dependencies with 100% Pure Java: You can keep your program portable by avoiding the use of libraries written in other languages. The 100% Pure JavaTM Product Certification Program has a repository of historical process manuals, white papers, brochures, and similar materials online.

· Write once, run anywhere: Because 100% Pure Java programs are compiled into machine-independent bytecodes, they run consistently on any Java platform.

· Distribute software more easily: You can upgrade applets easily from a central server. Applets take advantage of the feature of allowing new classes to be loaded "on the fly," without recompiling the entire program.

The java development team which included Patrick Naught on discovered that the existing language like C and C++ had limitations in terms of both reliability and portability. However, the language java on C and C++ but removed a number of features of C and C++ that were considered as sources of problems and thus made java a really simple, reliable, portable and powerful language.

Specifically, this overview will include a bit include a bit of the history of java platform, touch of the java programming language, and the ways in which people are using java applications and applets, now and in the likely future. After going a while down the path of consumer – electronics devices, they realized that they had something particularly cool in the java language and focused on it as a language for network computing. Sun formed the java soft group which in a little over three years has grown to over six hundred people working on java related technologies.
Features of JAVA:

Platform – Independent:

Changes and upgrades in operating systems, processors and system resources will not force any change in java programs. This is the reason why Java has become a popular language for programming on Internet.

Portable:

Java ensures portability in two ways. First, java compiler generates bytecode instructions that can be implemented on any machine. Secondly, the size of the primitive data types is machine independent.

Object oriented:

Java is a true objected oriented language. Almost everything in java is an object. All program code and data must reside within objects and classes. Java comes with an extensive set of classes arranged in packages that we can use in out programs by inheritance. The object model in java is simple and easy to extend.

Distributed:

Java is designed as a distributed language for creating applications on networks. It has the ability to share both date and programs.

Dynamic:

Java is a dynamic language. Java is capable of dynamically linking new class, libraries, methods and objects.

Secure:

Since java supports applets which are programs that are transferred through internet, there may arise a security threat. But java overcomes this problem by confining the applets to the runtime package or JVM and thus it prevents infections and malicious contents.

Robust:

Java is said to be robust in two ways

1. Java allocates and de-allocates its dynamic memory on its own.

2. Java provides exception.

Multithreaded:

Java supports multithreaded programs which allow you to write programs that do many things simultaneously. This is used in interactive network programs.

Interpreted:

The byte code is interpreted by JVM. Even though interpreted, Java provides high performance. The byte code generated by the Java compiler for translating to native machine code with high performance but the Just In Time (JIT) compiler in java.

JAVA Components:
· Swing

· J Frame

· J File Chooser

· J Scroll Pane

· Image

· Media Tracker

· String Tokenizer

· Buffered Image

· Container

Swing:

Swing is a set of classes that provides more powerful and flexible components that are possible with AWT and hence we adapted swing. In addition to normal components such as buttons, check box, labels swing includes tabbed panes, scroll panes, trees and tables. It provides extra facilities than the normal AWT components.

J Frame:

Like AWT’s frame class, the
J Frame class can generate events when things happen to the window, such as the window being closed, activated, iconified or opened. These events can be sent to a window Listener if one is registered with the frame.

J File Chooser:

 It provides a simple mechanism for the user to choose a file. Here it points the users default directory. It includes the following methods:

Show Dialog:

Pops a custom file chooser dialog with a custom approve button.

Set Dialog Type:

Sets the type of this dialog. Use open-dialog when we want to bring up a file chooser that the user can use to open file. Use save-dialog for letting the user choose a file for saving.

Set Dialog Title:

Set the given string as the title of the J File Chooser window.

J Scroll Pane:

Encapsulates a scrollable window. It is a component that represents a rectangle area in which a component may be viewed. It provides horizontal and vertical scrollbar if necessary.

Image:

The image class and the java.awt.image package, together provide the support for imaging both for the display and manipulation of web design. Images are objects of the image class, and they are manipulated using the classes found in the java.awt.image package.

Media Tracker:

Many early java developers found the image observer interface is far too difficult to understand and manage when there were multiple images to be loaded.

So the developer community was asked to provide a simpler solution that would allow programmers to load all of their images synchronously. In response to this, Sun Microsystems added a class to AWT called media tracker.

A media tracker is an object that will check the status of an arbitrary number of images in parallel. The add Image method of it is used to track the loading status of the image.

String Tokenizer:

The processing of text often consists of parsing a formatted input string. Parsing is the division of the text in to set of discrete parts or tokens, which in a certain sequence can convey can convey a semantic meaning.

The StringTokenizer provides first step in this parsing process, often called the lexer or scanner. StringTokenizer implements the Enumeration interface. Therefore given an input sting, we can enumerate the individual tokens contained in it using String Tokenizer.

Buffered Image:

In previous versions of Java, it was very difficult to manipulate images on a pixel-by-pixel basis. We have to either create an image filter to modify the pixels as they came through the filter, or we have to make a pixel grabber to grab an image and then create a Memory Image Source to turn the array of pixels in to an image. The buffered Image class provides a quick, convenient shortcut by providing an image whose pixels can be manipulate directly.
3. REQUIREMENTS :
 4.1 Specification Principles :

Software Requirements Specification plays an important role in creating quality software solutions. Specification is basically a representation process. Requirements are represented in a manner that ultimately leads to successful software implementation.

 Requirements may be specified in a variety of ways. However there are some guidelines worth following: -

Representation format and content should be relevant to the problem

Information contained within the specification should be nested

Diagrams and other notational forms should be restricted in number and consistent in use.

Representations should be revisable.

 4.2 Software Requirements Specifications:

The software requirements specification is produced at the culmination of the analysis task. The function and performance allocated to the software as a part of system engineering are refined by establishing a complete information description, a detailed functional and behavioral description, and indication of performance requirements and design constraints, appropriate validation criteria and other data pertinent to requirements.

4.2.1 Software Requirements:

 # OPERATING SYSTEM
:
Windows XP
 # TECHNOLOGY

:
J2SDK1.4.1 And above
4.2.2 Hardware Requirements:

PROCESSOR

:
Pentium III

CLOCK SPEED

:
550 MHz

HARD DISK

:
20GB

RAM

:
128MB

CACHE MEMORY

:
512KB

OPERAING SYSEM

:
Windows-2000 Professional

MONITOR

:
Color Monitor

KEYBOARD

:
104Keys

MOUSE

:
3Buttons
4. DESIGN :
4.1. SYSTEM ARCHITECTURE :

4.2. 5.2 MODULE DESCRIPTION

5.2.1 Create Network

To construct a network for our project we choose randomly selected fully connected network topologies having several nodes in a certain area. In this network the transmission ranges were selected to create a range of network topologies from sparsely connected, where basic forwarding strategies have a lower rate of path completion, to densely connect.

 5.2.2 Neighbor node Information Table

We are going to use the geographic forwarding for strategies that use location information to forward packets node by node toward the destination (and therefore only provide a partial routing solution due to failure at local minima where no neighboring nodes exist which are closer to the destination). We use the term geographic routing for strategies that use geographic location information but also incorporate a backup routing strategy on geographic forwarding failure at local minima to provide 100 percent of path completion.
5.2.3 Global Position System

Uninformed decisions regarding the direction of boundary traversal can have a significant effect on the path length of a route. To address this problem, the mapping of boundaries using boundary probing is proposed as a novel approach which views the geographic network from a geographic information system (GIS) perspective in order to map the outer boundary and the perimeter of voids in the network topology. Knowledge about boundaries may be useful in determining waypoints, zones, and areas that may be an obstacle to routing for other geographic routing strategies and may also be used to detect and map data islands and network partitions. Map information is maintained by storing the boundary link state information in each boundary node member.

5.2.4 Boundary state routing :
When a packet is to be routed from the source or an intermediate node, BSR will first attempt to route the packet by using Greedy forwarding, regardless of the current routing mode setting in the packet. If Greedy forwarding fails and the packet is not in the Boundary mode, BSR will check for a route by using Bounded Compass forwarding. If this is successful, and the next hop is closer to the destination than the current node, then the Bounded Compass route is used. If the next hop is farther from the destination, the algorithm checks for an alternate Boundary route (that is, the current node is on a boundary containing a node closer to the destination than the current node). If successful, the Boundary route is used in preference to the Bounded Compass route, as the choice is informed by the optimal direction around the boundary. If unsuccessful, the Bounded Compass route is used. Should both Greedy and Bounded Compass forwarding fail, the algorithm will check for a boundary route. If unsuccessful, the packet will be dropped.
4.3. UML DIAGRAMS
Unified Modeling Language Diagrams

· The unified modeling language allows the software engineer to express an analysis model using the modeling notation that is governed by a set of syntactic semantic and pragmatic rules.

· A UML system is represented using five different views that describe the system from distinctly different perspective. Each view is defined by a set of diagram, which is as follows.

User Model View
· This view represents the system from the users perspective.

· The analysis representation describes a usage scenario from the end-users perspective.

Structural model view

· In this model the data and functionality are arrived from inside the system.

· This model view models the static structures

Behavioral Model View

· It represents the dynamic of behavioral as parts of the system, depicting the interactions of collection between various structural elements described in the user model and structural model view.
Implementation Model View

· In this the structural and behavioral as parts of the system are represented as they are to be built.

Environmental Model View

In this the structural and behavioral aspects of the environment in which the system is to be implemented are represented.

UML is specifically constructed through two different domains they are

· UML Analysis modeling, this focuses on the user model and structural model views of the system.

· UML design modeling, which focuses on the behavioral modeling, implementation modeling and environmental model views.

Diagrams overview
In UML has 14 types of diagrams divided into two categories. Seven diagram types represent structural information, and the other seven represent general types of behavior, including four that represent different aspects of interactions.

[image: image10.png]Diagram

—

Structure.
Diagram

Behavior
Diagram

Class,
Diagram

Component
Diagram

Object
Diagram

Activity
Diagram

Use Case
Diagram

Profile
Diagram

Composite
Structure.
Diagram

Deployment

Diagram

Package
Diagram

Interaction State Machine

Diagram

Diagram

Notation: UML

5

Sequence
Diagram

Communication
Diagram

Tnteraction
Overview
Diagram

Timing
Diagram

UML is a notation that resulted from the unification of Object Modeling Technique and Object Oriented Software Technology .UML has been designed for broad range of application.

4.3.1. CLASS DIAGRAM

Identification of analysis classes:

 A class is a set of objects that share a common structure and common behavior (the same attributes, operations, relationships and semantics). A class is an abstraction of real-world items.

There are 4 approaches for identifying classes:

1. Noun phrase approach:

2. Common class pattern approach.

3. Use case Driven Sequence or Collaboration approach.

4. Classes , Responsibilities and collaborators Approach

1. Noun Phrase Approach:

 The guidelines for identifying the classes:

a. Look for nouns and noun phrases in the use cases.

b. Some classes are implicit or taken from general knowledge.

c. All classes must make sense in the application domain; Avoid computer implementation classes – defer them to the design stage.

d. Carefully choose and define the class names.

 After identifying the classes we have to eliminate the following types of classes:

a. Redundant classes.

b. Adjective classes.
2. Common class pattern approach:

 The following are the patterns for finding the candidate classes:

a. Concept class.

b. Events class.

c. Organization class

d. Peoples class

e. Places class

f. Tangible things and devices class.

3. Use case driven approach:

 We have to draw the sequence diagram or collaboration diagram. If there is need for some classes to represent some functionality then add new classes which perform those functionalities.
4. CRC approach:

 The process consists of the following steps:

a. Identify classes’ responsibilities (and identify the classes)

b. Assign the responsibilities

c. Identify the collaborators.

Super-sub class relationships:

Super-sub class hierarchy is a relationship between classes where one class is the parent class of another class (derived class).This is based on inheritance.

Guidelines for identifying the super-sub relationship, a generalization are

1. Top-down: Look for noun phrases composed of various adjectives in a class name. Avoid excessive refinement. Specialize only when the sub classes have significant behavior.

2. Bottom-up: Look for classes with similar attributes or methods. Group them by moving the common attributes and methods to an abstract class. You may have to alter the definitions a bit.

3. Reusability: Move the attributes and methods as high as possible in the hierarchy.

4. Multiple inheritances:
 Avoid excessive use of multiple inheritances. One way of getting benefits of multiple inheritances is to inherit from the most appropriate class and add an object of another class as an attribute.

5. Aggregation or a-part-of relationship:

 It represents the situation where a class consists of several component classes. A class that is composed of other classes doesn’t behave like its parts. It behaves very difficultly. The major properties of this relationship are transitivity and anti symmetry.
There are three types of aggregation relationships. They are:

Assembly: It is constructed from its parts and an assembly-part situation physically exists.

Container: A physical whole encompasses but is not constructed from physical parts.

Collection member: A conceptual whole encompasses parts that may be physical or conceptual. The container and collection are represented by hollow diamonds but composition is represented by solid diamond.

4.3.2. USECASE DIAGRAM :
A use case in software engineering and systems engineering is a description of a system’s behavior as it responds to a request that originates from outside of that system. In other words, a use case describes "who" can do "what" with the system in question. The use case technique is used to capture a system's behavioral requirements by detailing scenario-driven threads through the functional requirements.

Use cases describe the system from the user's point of view.

Use cases describe the interaction between one or more actors (an actor that is the initiator of the interaction may be referred to as the 'primary actor') and the system itself, represented as a sequence of simple steps. Actors are something or someone which exists outside the system ('black box') under study, and that take part in a sequence of activities in a dialogue with the system to achieve some goal. Actors may be end users, other systems, or hardware devices. Each use case is a complete series of events, described from the point of view of the actor.

According to Bittner and Spence, "Use cases, stated simply, allow description of sequences of events that, taken together, lead to a system doing something useful." Each use case describes how the actor will interact with the system to achieve a specific goal. One or more scenarios may be generated from a use case, corresponding to the detail of each possible way of achieving that goal. Use cases typically avoid technical jargon, preferring instead the language of the end user or domain expert. Use cases are often co-authored by systems analysts and end users. The UML use case diagram can be used to graphically represent an overview of the use cases for a given system and a use-case analysis can be used to develop the diagram. Use cases are not normalized by any consortium, unlike the UML use case diagram by OMG.

Within systems engineering, use cases are used at a higher level than within software engineering, often representing missions or stakeholder goals. The detailed requirements may then be captured in SysML requirement diagrams or similar mechanisms.

Use case focus
"Each use case focuses on describing how to achieve a goal or task. For most software projects this means that multiple, perhaps dozens, of use cases are needed to define the scope of the new system. The degree of formality of a particular software project and the stage of the project will influence the level of detail required in each use case."

Use cases should not be confused with the features of the system under consideration. A use case may be related to one or more features, and a feature may be related to one or more use cases.

A use case defines the interactions between external actors and the system under consideration to accomplish a goal. An actor specifies a role played by a person or thing when interacting with the system. The same person using the system may be represented as different actors because they are playing different roles. For example, "Joe" could be playing the role of a Customer when using an Automated Teller Machine to withdraw cash, or playing the role of a Bank Teller when using the system to restock the cash drawer.

Use cases treat the system as a black box, and the interactions with the system, including system responses, are perceived as from outside the system. This is a deliberate policy, because it forces the author to focus on what the system must do, not how it is to be done, and avoids the trap of making assumptions about how the functionality will be accomplished.

Use cases may be described at the abstract level (business use case, sometimes called essential use case), or at the system level (system use case). The differences between these is the scope.

· A business use case is described in technology-free terminology which treats the business process as a black box and describes the business process that is used by its business actors (people or systems external to the business) to achieve their goals (e.g., manual payment processing, expense report approval, manage corporate real estate). The business use case will describe a process that provides value to the business actor, and it describes what the process does. Business Process Mapping is another method for this level of business description.

· A system use case is normally described at the system functionality level (for example, create voucher) and specifies the function or the service that the system provides for the user. A system use case will describe what the actor achieves interacting with the system. For this reason it is recommended that a system use case specification begin with a verb (e.g., create voucher, select payments, exclude payment, cancel voucher). Generally, the actor could be a human user or another system interacting with the system being defined.
A use case should:

· Describe what the system shall do for the actor to achieve a particular goal.

· Include no implementation-specific language.

· Be at the appropriate level of detail.

· Not include detail regarding user interfaces and screens. This is done in user-interface design.

Elements of a Use Case Diagram

A use case diagram is quite simple in nature and depicts two types of elements: one representing the business roles and the other representing the business processes. Let us take a closer look at use at what elements constitute a use case diagram.

· Actors: An actor portrays any entity (or entities) that perform certain roles in a given system. The different roles the actor represents are the actual business roles of users in a given system. An actor in a use case diagram interacts with a use case. For example, for modeling a banking application, a customer entity represents an actor in the application. Similarly, the person who provides service at the counter is also an actor. But it is up to you to consider what actors make an impact on the functionality that you want to model. If an entity does not affect a certain piece of functionality that you are modeling, it makes no sense to represent it as an actor.

[image: image11.png]Actor

<<actor >
System &

· Use case: A use case in a use case diagram is a visual representation of a distinct business functionality in a system. The key term here is "distinct business functionality." To choose a business process as a likely candidate for modeling as a use case, you need to ensure that the business process is discrete in nature. As the first step in identifying use cases, you should list the discrete business functions in your problem statement. Each of these business functions can be classified as a potential use case. Remember that identifying use cases is a discovery rather than a creation. As business functionality becomes clearer, the underlying use cases become more easily evident.

To draw use cases using ovals. Label with ovals with verbs that represent the system's functions.

[image: image12.png]

· System boundary: A system boundary defines the scope of what a system will be. A system cannot have infinite functionality. So, it follows that use cases also need to have definitive limits defined. A system boundary of a use case diagram defines the limits of the system. The system boundary is shown as a rectangle spanning all the use cases in the system.

To draw your system's boundaries using a rectangle that contains use cases. Place actors outside the system's boundaries.

[image: image13.png]Actor

Relationships in Use Cases

Use cases share different kinds of relationships. A relationship between two use cases is basically a dependency between the two use cases. Defining a relationship between two use cases is the decision of the modeler of the use case diagram. This reuse of an existing use case using different types of relationships reduces the overall effort required in defining use cases in a system. A similar reuse established using relationships, will be apparent in the other UML diagrams as well.

[image: image14.png][—<<extends>>

SN

Use case relationships can be one of the following:

· Include: When a use case is depicted as using the functionality of another use case in a diagram, this relationship between the use cases is named as an include relationship. Literally speaking, in an include relationship; a use case includes the functionality described in the use case as a part of its business process flow. An include relationship is depicted with a directed arrow having a dotted shaft. The tip of the arrowhead points to the parent use case and the child use case is connected at the base of the arrow. The stereotype "<<include>>" identifies the relationship as an include relationship.

[image: image15.png]

An example of an include relationship
For example, in Figure show in above, you can see that the functionality defined by the "Validate patient records" use case is contained within the "Make appointment" use case. Hence, whenever the "Make appointment" use case executes, the business steps defined in the "Validate patient records" use case are also executed.

· Extend: In an extend relationship between two use cases, the child use case adds to the existing functionality and characteristics of the parent use case. An extend relationship is depicted with a directed arrow having a dotted shaft, similar to the include relationship. The tip of the arrowhead points to the parent use case and the child use case is connected at the base of the arrow. The stereotype "<<extend>>" identifies the relationship as an extend relationship, as shown in below Figure.

[image: image16.png]A

jr—

Pestom Pbologieal Tests

An example of an extend relationship
In the above shows an example of an extend relationship between the "Perform medical tests" (parent) and "Perform Pathological Tests" (child) use cases. The "Perform Pathological Tests" use case enhances the functionality of the "Perform medical tests" use case. Essentially, the "Perform Pathological Tests" use case is a specialized version of the generic "Perform medical tests" use case.

· Generalizations: A generalization relationship is also a parent-child relationship between use cases. The child use case in the generalization relationship has the underlying business process meaning, but is an enhancement of the parent use case. In a use case diagram, generalization is shown as a directed arrow with a triangle arrowhead (see in below Figure). The child use case is connected at the base of the arrow. The tip of the arrow is connected to the parent use case.

[image: image17.png]Store patent reords computeried fes)

An example of a generalization relationship
On the face of it, both generalizations and extends appear to be more or less similar. But there is a subtle difference between a generalization relationship and an extend relationship. When you establish a generalization relationship between use cases, this implies that the parent use case can be replaced by the child use case without breaking the business flow. On the other hand, an extend relationship between use cases implies that the child use case enhances the functionality of the parent use case into a specialized functionality. The parent use case in an extend relationship cannot be replaced by the child use case.

Let us see if we understand things better with an example. From the diagram of a generalization relationship (refer to the above figure), you can see that "Store patient records (paper file)" (parent) use case is depicted as a generalized version of the "Store patient records (computerized file)" (child) use case. Defining a generalization relationship between the two implies that you can replace any occurrence of the "Store patient records (paper file)" use case in the business flow of your system with the "Store patient records (computerized file)" use case without impacting any business flow. This would mean that in future you might choose to store patient records in a computerized file instead of as paper documents without impacting other business actions.

Now, if we had defined this as an extend relationship between the two use cases, this would imply that the "Store patient records (computerized file)" use case is a specialized version of the "Store patient records (paper file)" use case. Hence, you would not be able to seamlessly replace the occurrence of the "Store patient records (paper file)" use case with the "Store patient records (computerized file)" use case.

[image: image18.png]CREATE NETWORK

% /4 FIND NEIGHBOR NODES
USER \
NEIGHBOR INFORMATION TABLE

FIND GLOBA POSITION SYSTEM
FIND THE BOUNDARY VALUES
DATA FORWARDING

4.3.3. SEQUENCE DIAGRAM :
A sequence diagram is a graphical view of a scenario that shows object interaction in a time-based sequence what happens first, what happens next. Sequence diagrams establish the roles of objects and help provide essential information to determine class responsibilities and interfaces.

There are two main differences between sequence and collaboration diagrams: sequence diagrams show time-based object interaction while collaboration diagrams show how objects associate with each other.

A sequence diagram has two dimensions: typically, vertical placement represents time and horizontal placement represents different objects.

Object: An object has state, behavior, and identity. The structure and behavior of similar objects are defined in their common class. Each object in a diagram indicates some instance of a class. An object that is not named is referred to as a class instance.

The object icon is similar to a class icon except that the name is underlined:

An object's concurrency is defined by the concurrency of its class.

Message: A message is the communication carried between two objects that trigger an event. A message carries information from the source focus of control to the destination focus of control.

The synchronization of a message can be modified through the message specification.

Synchronization means a message where the sending object pauses to wait for results.

Link: A link should exist between two objects, including class utilities, only if there is a relationship between their corresponding classes. The existence of a relationship between two classes symbolizes a path of communication between instances of the classes: one object may send messages to another. The link is depicted as a straight line between objects or objects and class instances in a collaboration diagram. If an object links to itself, use the loop version of the icon.

[image: image19.png]=3 NETWORK

11 construct()

2 1 find neighbour nodes()

3 updates()

IS TABLE

41 finds)

T

T'S s PATHO

7+ SENDING() D

& £ SEND DATAQ)

4.3.4. COLLABARAION DIAGRAM :
Collaboration diagrams and sequence diagrams are alternate representations of an interaction. A collaboration diagram is an interaction diagram that shows the order of messages that implement an operation or a transaction. A sequence diagram shows object interaction in a time-based sequence.

Collaboration diagrams show objects, their links, and their messages. They can also contain simple class instances and class utility instances. Each collaboration diagram provides a view of the interactions or structural relationships that occur between objects and object-like entities in the current model.

These diagrams are used to indicate the semantics of the primary and secondary interactions. They also show the semantics of mechanisms in the logical design of the system

Message icons: A message icon represents the communication between objects indicating that an action will follow. The message icon is a horizontal, solid arrow connecting two lifelines together. A message icon can appear in 3 ways: message icon only, message icon with sequence number, and message icon with sequence number and message label.

There are two types of numbering schemes.

1. Flat numbered sequence:

In this messages are numbered as 1, 2, 3…..

2. Decimal numbered sequence:

In this the messages are given numbers as 1.1, 1.2, 1.3……It makes clear which operation is calling which other operation.

Differences between sequence and Collaboration diagrams are:

· Sequence diagram is easy to read.

· Collaboration diagram can be used to indicate how objects are statically connected.

· There is no numbering in sequence diagram.

· Sequence diagram shows the links between objects in a time based sequence.

· Collaboration diagram shows how the objects associate with each other

[image: image20.png]NETWORK FINDS

" [essvatem

+CONSTRUCT

IS TABLE

BASED O

REQUEST
DATA SEND

4.3.5. ACTIVITY DIAGRAM

 Activity diagrams provide a way to model the workflow of a business process, code-specific information such as a class operation. The transitions are implicitly triggered by completion of the actions in the source activities. The main difference between activity diagrams and state charts is activity diagrams are activity centric, while state charts are state centric. An activity diagram is typically used for modeling the sequence of activities in a process, whereas a state chart is better suited to model the discrete stages of an object’s lifetime.

 An activity represents the performance of task or duty in a workflow. It may also represent the execution of a statement in a procedure. You can share activities between state machines. However, transitions cannot be shared.

An action is described as a "task" that takes place while inside a state or activity.

Actions on activities can occur at one of four times:

· On entry: The "task" must be performed when the object enters the state or activity.

· On exit: The "task" must be performed when the object exits the state or activity.

· Do: The "task" must be performed while in the state or activity and must continue until exiting the state.

· On event: The "task" triggers an action only if a specific event is received.

· An end state represents a final or terminal state on an activity diagram or state chart diagram.

· A start state (also called an "initial state") explicitly shows the beginning of a workflow on an activity diagram.

· Swim lanes can represent organizational units or roles within a business model. They are very similar to an object. They are used to determine which unit is responsible for carrying out the specific activity. They show ownership or responsibility. Transitions cross swim lanes

· Synchronizations enable you to see a simultaneous workflow in an activity diagram Synchronizations visually define forks and joins representing parallel workflow.

· A fork construct is used to model a single flow of control that divides into two or more separate, but simultaneous flows. A corresponding join should ideally accompany every fork that appears on an activity diagram. A join consists of two of more flows of control that unite into a single flow of control. All model elements (such as activities and states) that appear between a fork and join must complete before the flow of controls can unite into one.

· An object flow on an activity diagram represents the relationship between an activity and the object that creates it (as an output) or uses it (as an input).

[image: image21.png]“CREATES NETWORK

FIND NEIGHEOR NODES

(GPs SYSTEM)

NEIGHEOR. NODE SYSTEM

FIND PATH
BOUNDARY MAPPING VALLES

4.3.6. COMPONENT DIAGRAM :
The different high-level reusable parts of a system are represented in a Component diagram. A component is one such constituent part of a system. In addition to representing the high-level parts, the Component diagram also captures the inter-relationships between these parts.

So, how are component diagrams different from the previous UML diagrams that we have seen? The primary difference is that Component diagrams represent the implementation perspective of a system. Hence, components in a Component diagram reflect grouping of the different design elements of a system, for example, classes of the system.

Let us briefly understand what criteria to apply to model a component. First and foremost, a component should be substitutable as is. Secondly, a component must provide an interface to enable other components to interact and use the services provided by the component. So, why would not a design element like an interface suffice? An interface provides only the service but not the implementation. Implementation is normally provided by a class that implements the interface. In complex systems, the physical implementation of a defined service is provided by a group of classes rather than a single class. A component is an easy way to represent the grouping together of such implementation classes.

You can model different types of components based on their use and applicability in a system. Components that you can model in a system can be simple executable components or library components that represent system and application libraries used in a system. You also can have file components that represent the source code files of an application or document files that represent, for example, the user interface files such as HTML or JSP files. Finally, you can use components to represent even the database tables of a system as well!

Now that we understand the concepts of a component in a Component diagram, let us see what notations to use to draw a Component diagram.

Elements of a Component Diagram

A Component diagram consists of the following elements:

	Element and its description
	Symbol

	Component: The objects interacting with each other in the system. Depicted by a rectangle with the name of the object in it, preceded by a colon and underlined.
	[image: image22.png]5 s |

	Class/Interface/Object: Similar to the notations used in class and object diagrams
	[image: image23.png]

	Relation/Association: Similar to the relation/association used in class diagrams
	[image: image24.png]

4.3.7. DEPLOYMENT DIAGRAM

Deployment Diagram

Deployment diagrams depict the physical resources in a system including nodes, components, and connections. Basic Deployment Diagram Symbols and Notations

Component

A node is a physical resource that executes code components. Learn how to resize grouped objects like nodes.

[image: image25.png]Node Name

Association

Association refers to a physical connection between nodes, such as Ethernet.
Learn how to connect two nodes.

[image: image26.png][Node

[Node

Components and Nodes

Place components inside the node that deploys them.

[image: image27.png]Component

Component

4.3.8. STATE CHART DIAGRAM :
State chart diagrams describe the behavior of an individual object as a number of states and transitions between these states. A state represents a particular set of values for an object. The sequence diagram focuses on the messages exchanged between objects, the state chart diagrams focuses on the transition between states.
Statechart Diagram :
A statechart diagram shows the behavior of classes in response to external stimuli. This diagram models the dynamic flow of control from state to state within a system. Basic Statechart Diagram Symbols and Notations

States :
States represent situations during the life of an object. You can easily illustrate a state in SmartDraw by using a rectangle with rounded corners.

[image: image28.png]

Transition :
A solid arrow represents the path between different states of an object. Label the transition with the event that triggered it and the action that results from it.
Learn how to draw lines and arrows in SmartDraw.

[image: image29.png]event / action

N

event / action

Initial State

A filled circle followed by an arrow represents the object's initial state. Learn how to rotate objects.

[image: image30.png]

Final State

An arrow pointing to a filled circle nested inside another circle represents the object's final state.

[image: image31.png]

Synchronization and Splitting of Control

A short heavy bar with two transitions entering it represents a synchronization of control. A short heavy bar with two transitions leaving it represents a splitting of control that creates multiple states.

[image: image32.png]K

synchronization splitting of control

5. CODING :
package com.GlobalPositioningSystem;

import java.awt.Font;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.io.File;

import java.util.Vector;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JPanel;

import javax.swing.JScrollPane;

import javax.swing.JTable;

import javax.swing.table.DefaultTableModel;

import com.BoundaryDiscovery.ReceiveValue;

public class GPS implements ActionListener

{

public JLabel globall;

public JPanel panel;

public static DefaultTableModel tablemodel;

public JTable table;

public JScrollPane tablejsp;

public JFrame frame;

public JButton exit;

ReceiveValue recVal=null;

private void deleteTempFiles() {

File f=new File("allNodesDetails.properties");

f.delete();

}

public GPS()

{

deleteTempFiles();

recVal=new ReceiveValue();

frame=new JFrame("GPS");

panel=new JPanel();

panel.setLayout(null);

globall=new JLabel("Global Positioning System");

globall.setBounds(50,50,200,20);

globall.setFont(new Font("Comic Sans MS",Font.BOLD,13));

panel.add(globall);

tablemodel=new DefaultTableModel();

table=new JTable(tablemodel);

String tablecol[]={"Node","Latitude & Longitude"};

tablemodel.addColumn(tablecol[0]);

tablemodel.addColumn(tablecol[1]);

tablejsp=new JScrollPane(table);

tablejsp.setBounds(60,90,300,200);

panel.add(tablejsp);

exit=new JButton("Exit");

exit.setBounds(120,300,80,20);

exit.setFont(new Font("Comic Sans MS",Font.BOLD,13));

panel.add(exit);

frame.add(panel);

exit.addActionListener(this);

frame.setSize(500,450);

frame.setVisible(true);

}

public void actionPerformed(ActionEvent ae)

{

if(ae.getSource()==exit)

{

System.exit(0);

}

}

public static void receiveTable(Vector v)

{

Vector v1=new Vector();

System.out.println("Receive Vector"+v);

String firststatus=(String) v.get(0);

if(firststatus.equals("started"))

{

String node=(String) v.get(1);

v1.add(v.get(1));//nodename

//v1.add(v.get(2));

v1.add(v.get(3));//degree

int i=tablemodel.getRowCount();

System.out.println("i"+i);

tablemodel.insertRow(i,v1);

//neighmap=new Hashtable();

//neighmap.put(node,v1);

//obj.sharetoNode(neighmap);

}

else

{

System.out.println("with in else");

String nodename=(String)v.get(1);

int i=tablemodel.getRowCount();

for(int j=0;j<i;j++)

{

String node=(String) tablemodel.getValueAt(j,0);

System.out.println("Node $$$"+node);

if(node.equals(nodename))

{

tablemodel.removeRow(j);

break;

}

}

}

}

public static void main(String[] args)

{

new GPS();

}

}

6. TESTING :
Software Testing is a critical element of software quality assurance and represents the ultimate review of specification, design and coding, Testing presents an interesting anomaly for the software engineer.

7.1 Testing Objectives include:
1. Testing is a process of executing a program with the intent of finding an error

2. A good test case is one that has a probability of finding an as yet undiscovered error

3. A successful test is one that uncovers an undiscovered error
7.2 Testing Principles:
· All tests should be traceable to end user requirements

· Tests should be planned long before testing begins

· Testing should begin on a small scale and progress towards testing in large

· Exhaustive testing is not possible

· To be most effective testing should be conducted by a independent third party

7.3 Testing Strategies
A Strategy for software testing integrates software test cases into a series of well planned steps that result in the successful construction of software. Software testing is a broader topic for what is referred to as Verification and Validation. Verification refers to the set of activities that ensure that the software correctly implements a specific function. Validation refers he set of activities that ensure that the software that has been built is traceable to customer’s requirements

Unit Testing:

Unit testing focuses verification effort on the smallest unit of software design that is the module. Using procedural design description as a guide, important control paths are tested to uncover errors within the boundaries of the module. The unit test is normally white box testing oriented and the step can be conducted in parallel for multiple modules.
Integration Testing:

 Integration testing is a systematic technique for constructing the program structure, while conducting test to uncover errors associated with the interface. The objective is to take unit tested methods and build a program structure that has been dictated by design.
Top-down Integration:

Top down integrations is an incremental approach for construction of program structure. Modules are integrated by moving downward through the control hierarchy, beginning with the main control program. Modules subordinate to the main program are incorporated in the structure either in the breath-first or depth-first manner.

Bottom-up Integration:

This method as the name suggests, begins construction and testing with atomic modules i.e., modules at the lowest level. Because the modules are integrated in the bottom up manner the processing required for the modules subordinate to a given level is always available and the need for stubs is eliminated.

Validation Testing:

At the end of integration testing software is completely assembled as a package. Validation testing is the next stage, which can be defined as successful when the software functions in the manner reasonably expected by the customer. Reasonable expectations are those defined in the software requirements specifications. Information contained in those sections form a basis for validation testing approach.

System Testing:

System testing is actually a series of different tests whose primary purpose is to fully exercise the computer-based system. Although each test has a different purpose, all work to verify that all system elements have been properly integrated to perform allocated functions.

Security Testing:

Attempts to verify the protection mechanisms built into the system.

Performance Testing:

This method is designed to test runtime performance of software within the context of an integrated system.

7.4 IMPLEMENTATION :
Implementation includes all those activities that take place to convert from the old system to the new. The new system may be totally new; replacing an existing manual or automated system, or it may be a major modification to an existing system. Proper implementation is essential to provide reliable system to meet the organizational requirements. Successful implementation may not guarantee improvement in the organizational using the new system, as well as, improper installation will prevent any improvement.

The implementation phase involves the following tasks:

· Careful Planning

· Investigation of system and constraints

· Design of methods to achieve the changeover

· Training of staff in the changeover phase

· Evaluation of changeover.

7. SCREEN SHOTS :
[image: image33.png]Global Positioning System

Laitude & Longitude

[image: image34.png]Global Positioning System

Node

Laiude & Longitude

EMPT40

70

[image: image35.png]GPS

Node Laitude & Longitude.
ENP47a 70
EMP16g 7]
EMP053 70

System 1

[image: image36.png]e Enter Your Distance.

oK

[image: image37.png]® Enter Your Distance

ad

I ok || cancel

[image: image38.png]e Enter Your Degree

@

o] [cancel
!

[image: image39.png]Node BMP740 NeigbourNode Information Table

] Dist
Destination [ers | istance

Send Data

fath

sxxxxxxaInformation from GRGHRARRRRX

Distance

Degree

System3

[image: image40.png]@ Enter Your Distance.

50

ok || cancel

[image: image41.png]Enter Your Degree

a0

ok || cancel

[image: image42.png]Node BMPO53

§ Neighbour | Coverage | Distance | Degree

Destination] cPs BiPiee |5veze |50 70

Send Data
Path GetPath
snassassTnformation from GPGA=saRRRRR

Receive Data

EFETDFGOFDGDFG
Degree

Boundary

System3

[image: image43.png]Enter Your Distance

]

ok || cancel

[image: image44.png]® Enter Your Degree

2

ok || cancel

== d |

[image: image45.png]Node BMP143 NeigbourNode Information Table

- Neighbour | Coverage | Distance | Degree
Destination |] cPs BiPagy |5ve3r |50 50

Send Data

fath

sxxxxxxaInformation from GRGHRARRRRX

Receive Data .
Distance

Degree

Send | Clear Boundary

[image: image46.png]Node BMP143 bourNode Information Table

Neighbour | Coverage | Distance | Degree
Destination [BMP282 | s BwP0 lsvsar E %0

Send Data

fath

sxxxxxxaInformation from GRGHRARRRRX

Distance 40

Degree 70

Boundary

[image: image47.png]NeigbourNode Information Table

Node BMPL43
Neighbour | Coverage | Distance | Degree

Destination [BMP262 | cbs BMPaD |5v837 5)

Send Data
vt [ouriisowrosoned
e e G

Receive Data

ceive bt Distance 40
begree 70

Browse | Send Clear: Exit Boundary

[image: image48.png]Node BMP169 NeigbourNode Information Table

Neighbour | Coverage | Distance | Degree
Destination [BMP0S3 | BwPos3 |svsar 40 i)

Send Data
EFETDFGGFDGDFG

Path [BMP169-=EMP053 GetPath

sxxxxxxaInformation from GRGHRARRRRX

Receive Data Distance 40

Degree 70

8. CONCLUSION :
Geographic forwarding strategy, Greedy-Bounded Compass forwarding, which is an effective boundary mapping procedure, and a geographic routing protocol BSR, which has demonstrated significant improvements in path efficiency over the existing geographic routing protocol GPSR in static network topologies. This new forwarding strategy Greedy-Bounded Compass forwarding has demonstrated an improved path completion rate of up to 45.7 percent in sparse networks over the most commonly used geographic forwarding strategy Greedy forwarding.
We have also introduced a BMP, which maintains the boundary-state information and provides next-hop selection for routing. BMP minimizes the probing overhead by relying on Greedy with Bounded Compass forwarding to route around convex boundaries.
The proposed geographic routing protocol BSR has demonstrated a significant improvement in path efficiency over both GPSR and GPSR with Greedy-Bounded Compass forwarding in sparse networks, with an average degree of connectivity of 2.0 and 3.0. BSR has also shown a 100 percent path completion without looping. The proposed routing protocol BSR allows a trade-off between complexity and more gradual performance degradation as the network hop count increases. Future research will improve the boundary selection algorithm to incorporate boundary swapping and pruning of branches before addressing the issues of boundary maintenance and control overhead in mobile topologies.

9. REFERENCES :
[1] C.E. Perkins and P. Bhagwat, “Highly Dynamic Destination Sequenced Distance-Vector Routing (DSDV) for Mobile Computers,” Proc. ACM Conf. Comm. Architecture, Protocols and Applications (SIGCOMM ’94), pp. 234-244, 1994.
[2] S. Murthy and J.J. Garcia-Luna-Aceves, “An Efficient Routing Protocol for Wireless Networks,” ACM Mobile Networks and Applications J., special issue on routing in mobile communication networks, vol. 1, pp. 183-197, Oct. 1996.
[3] T.-W. Chen and M. Gerla, “Global State Routing: A New Routing Scheme for Ad Hoc Wireless Networks,” Proc. IEEE Int’l Conf. Comm. (ICC ’98), pp. 171-175, 1998.
[4] G. Chen, M. Gerla, and T.-W. Chen, “Fisheye State Routing: A Routing Scheme for Ad Hoc Wireless Networks,” Proc. IEEE Conf. Comm. (ICC ’00), pp. 70-74, 2000.
[5] M.S. Corson and A. Ephremides, “A Distributed Routing Algorithm for Mobile Wireless Networks,” ACM/Balzer Wireless Networks, vol. 1, pp. 61-81, 1995.
[6] D.B. Johnson and D.A. Maltz, “Dynamic Source Routing in Ad Hoc Wireless Networks,” Mobile Computing, T. Imielinsky and H. Korth, eds., pp. 153-181, Kluwer Academic Publishers, 1996.

[7] C.-K. Toh, “A Novel Distributed Routing Protocol to Support Ad-Hoc Mobile Computing,” Proc. 15th IEEE Ann. Int’l Phoenix Conf. Computers and Comm. (IPCCC), pp. 480-486, Mar . 1996.
[8] R. Dube, C.D. Rais, K.-Y. Wang, and S.K. Tripathi, “Signal Stability Based Adaptive Routing (SSA) for Ad Hoc Mobile Networks,” IEEE Personal Comm., pp. 36-45, Feb. 1997.
[9] V.D. Park and M.S. Corson, “A Highly Adaptive Distributed Routing Algorithm for Mobile Wireless Networks,” Proc. IEEE INFOCOM, 1997.

[10] C.E. Perkins and E.M. Royer, “Ad Hoc On-Demand Distance Vector Routing,” Proc. Second IEEE Workshop Mobile Computing Systems and Applications (WMCSA ’99), pp. 90-100, 1999.
[11] Z.J. Hass, “A New Routing Protocol for Reconfigurable Wireless Networks,” Proc. Sixth IEEE Int’l Conf. Universal Personal Comm. (ICUPC ’97), 1997.
[12] C.-C. Chiang, H.K. Wu, W. Liu, and M. Gerla, “Routing in Clustered Multihop, Mobile Wireless Networks with Fading Channel,” Proc. Fifth IEEE Singapore Int’l Conf. Networks (SICON ’97), pp. 197-211, 1997.
[13] R. Sivakumar, P. Sinha, and V. Bharghavan, “CEDAR: A Core- Extraction Distributed Ad Hoc Routing Algorithm,” IEEE J. Selected Areas in Comm., vol. 17, pp. 1454-1465, Aug. 1999.
[14] G. Pei, M. Gerla, X. Hong, and C.-C. Chiang, “A Wireless Hierarchical Routing Protocol with Group Mobility,” Proc. Second ACM/IEEE Int’l Workshop Modeling Analysis and Simulation of Wireless and Mobile Systems (MSWiM ’99), pp. 53-60, 1999.
[15] J.C. Navas and T. Imielinski, “GeoCast—Geographic Addressing and Routing,” Proc. ACM MobiCom, pp. 66-76, 1997.
[16] T. Imielinski and J.C. Navas, GPS-Based Addressing and Routing, IETF RFC 2009, Dept. of Computer Science, Rutgers Univ., 1996.
[17] T. Camp, Location Information Services in Mobile Ad Hoc Network. Colorado School of Mines, Oct. 2003.

[18] R. Nelson and L. Kleinrock, “The Spatial Capacity of a Slotted ALOHA Multihop Packet Radio Network with Capture,” IEEE Trans. Comm., vol. 3, pp. 684-694, June 1984.

[19] H. Takagi and L. Kleinrock, “Optimal Transmission Ranges for Randomly Distributed Packet Radio Terminals,” IEEE Trans. Comm., vol. 32, pp. 246-257, Mar. 1984.

[20] T.-C. Hou and V.O.K. Li, “Transmission Range Control in Multihop Packet Radio Networks,” IEEE Trans. Comm., vol. 34, pp. 38-44, Jan. 1986.

[21] G. Finn, “Routing and Addressing Problems in Large Metropolitan- Scale Internetworks,” Technical Report ISI/RR-87-180, ISI, 1987.

[22] E. Kranakis, H. Singh, and J. Urrutia, “Compass Routing on Geometric Networks,” Proc. 11th Canadian Conf. Computational Geometry (CCCG ’99), 1999.

[23] I. Stojmenovic, M. Russell, and B. Vukojevic, “Depth First Search and Location Based Localized Routing and QoS Routing in Wireless Networks,” Proc. 29th IEEE Int’l Conf. Parallel Processing (ICPP ’00), pp. 173-180, 2000.

[24] M. Grossglauser and M. Vetterli, “Locating Nodes with EASE: Mobility Diffusion of Last Encounters in Ad Hoc Networks,” Proc. IEEE INFOCOM, 2003.

[25] I. Stojmenovic and X. Lin, “Loop-Free Hybrid Single-Path/ Flooding Routing Algorithms with Guaranteed Delivery for Wireless Networks,” IEEE Trans. Parallel and Distributed Systems, vol. 12, pp. 1023-1032, Oct. 2001.

[26] S. Datta, I. Stojmenovic, and J. Wu, “Internal Node and Shortcut Based Routing with Guaranteed Delivery in Wireless Networks,” Proc. 21st IEEE ICDCS Workshop Wireless Networks and Mobile Computing (WNMC ’01), 2001.

[27] B. Karp and H.T. Kung, “GPSR: Greedy Perimeter Stateless Routing for Wireless Networks,” Proc. ACM MobiCom, pp. 243- 254, 2000.

[28] F. Kuhn, R. Wattenhofer, and A. Zollinger, “Asymptotically Optimal Geometric Mobile Ad-Hoc Routing,” Proc. Sixth Int’l Workshop Discrete Algorithms and Methods for Mobile Computing and Comm. (DIALM ’02), pp. 24-33, 2002.

[29] R. Jain, A. Puri, and R. Sengupta, “Geographical Routing Using Partial Information in Wireless Ad Hoc Networks,” IEEE Personal Comm., pp. 48-57, Feb. 2001.

[30] L. Blazevic, L. Buttyan, S. Capkun, S. Giordano, J.P. Hubaux, and J.-Y.L. Boudec, “Self-Organization in Mobile Ad-Hoc Networks: The Approach of Terminodes,” IEEE Comm. Magazine, June 2001.

[31] S.-C. Woo and S. Singh, “Scalable Routing Protocol for Ad Hoc Networks,” ACM Wireless Networks, vol. 7, pp. 513-529, 2001.
[32] Y.B. Ko and N.H. Vaidya, “Location-Aided Routing (LAR) in Mobile Ad Hoc Networks,” Proc. ACM MobiCom, pp. 66-75, 1998.
[33] S. Basagni, I. Chlamtac, V.R. Syrotiuk, and B.A. Woodward, “A Distance Routing Effect Algorithm for Mobility (DREAM),” Proc. ACM MobiCom, pp. 76-84, Oct. 1998.

TEXT BOOKS:

1. Herrbert Schildt, “The Complete Reference JAVA 2”,7th Edition Tata McGraw Hills,2001.
2. Sommerville, “ Sofware engineering”, 7th Edition, Pearson Education.
3. Grady Booch, ames Rumbaugh, IvarJacobson: “Unified Modelling Language User Guide”, Pearson education.

1. WEB SITES:

2. www.google.com
3. http://en.wikipedia.org
USERn

USER2

USER1

BOUNDARY SYSTEM

NODE 3

NODE 2

NODE 1

NODE n

NEIGHBOUR NODES

GLOBAL POSITION SYSTEM

NEIGHBOUR NODE INFORMATION TALE

DATA FOR SENDING

BOUNDARY MAPPING

